1
|
Vos AM, Maaskant E, Post W, Bosch D. Plant-inspired building blocks for future plastics. Trends Biotechnol 2025; 43:749-758. [PMID: 39592271 DOI: 10.1016/j.tibtech.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024]
Abstract
The transition from a linear fossil-based economy to a renewable circular economy requires a new approach to produce building blocks for plastics. This provides opportunities to reshape the plastic landscape and will positively impact the wide range of applications that make use of plastics. We propose that plant enzymes, which underlie the large biochemical diversity present in plant specialized metabolism, will facilitate the production of novel building blocks for new polymers via biotechnological processes. Thereby, plant-inspired plastic building blocks may enable the development of new plastics for targeted applications that can contribute to a future with renewable plastics.
Collapse
Affiliation(s)
- Aurin M Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| | - Evelien Maaskant
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Wouter Post
- Wageningen Food and Biobased Research, Wageningen University and Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Dirk Bosch
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| |
Collapse
|
2
|
Dağlar Ö, Türel T, Pantazidis C, Tomović Ž. Chemical and Solvent-Based Recycling of DGEBA-Based Epoxy Thermoset and Carbon-Fiber Reinforced Epoxy Composite Utilizing Imine-Containing Secondary Amine Hardener. Macromol Rapid Commun 2025; 46:e2400678. [PMID: 39520299 PMCID: PMC11756867 DOI: 10.1002/marc.202400678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Epoxy systems are essential in numerous industrial applications due to their exceptional mechanical properties, thermal stability, and chemical resistance. Yet, recycling epoxy networks and reinforcing materials in epoxy composites remains challenging, raising environmental concerns. The critical challenge is the recovery of well-defined molecules upon depolymerization. To address these issues, an innovative strategy is developed utilizing imine-containing secondary amine hardener (M1). The reaction of M1 with DGEBA produced high-performance epoxy thermoset P1, which exhibits Young's modulus of 2.18 GPa and tensile strength of 63.4 MPa, and excellent stability in neutral aqueous conditions. Upon carbon-fiber reinforcement, Young's modulus and tensile strength are significantly elevated to 10.99 GPa and 328.3 MPa, respectively. The reactive secondary amine functionalities enabled the tailored network to display a well-defined growth pattern, yielding only well-defined molecules and intact carbon fibers upon acidic depolymerization. Consequently, the recycled polymers retained properties identical to those of P1. Notably, it is discovered that despite the cross-linked nature of the epoxy networks, complete dissolution in dichloromethane facilitated straightforward solvent-based recycling, allowing the recovery of undamaged carbon fibers and an epoxy thermoset with properties matching the virgin material. Presented novel monomer design and approach showcased two important and efficient recycling options for epoxy systems.
Collapse
Affiliation(s)
- Özgün Dağlar
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistryand Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Tankut Türel
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistryand Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Christos Pantazidis
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistryand Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Željko Tomović
- Polymer Performance Materials GroupDepartment of Chemical Engineering and Chemistryand Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
3
|
Zhang Y, Liu X, Wan M, Zhu Y, Zhang K. Recent Development of Functional Bio-Based Epoxy Resins. Molecules 2024; 29:4428. [PMID: 39339423 PMCID: PMC11433883 DOI: 10.3390/molecules29184428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/04/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The development of epoxy resins is mainly dependent on non-renewable petroleum resources, commonly diglycidyl ether bisphenol A (DGEBA)-type epoxy monomers. Most raw materials of these thermoset resins are toxic to the health of human beings. To alleviate concerns about the environment and health, the design and synthesis of bio-based epoxy resins using biomass as raw materials have been widely studied in recent decades to replace petroleum-based epoxy resins. With the improvement in the requirements for the performance of bio-based epoxy resins, the design of bio-based epoxy resins with unique functions has attracted a lot of attention, and bio-based epoxy resins with flame-retardant, recyclable/degradable/reprocessable, antibacterial, and other functional bio-based epoxy resins have been developed to expand the applications of epoxy resins and improve their competitiveness. This review summarizes the research progress of functional bio-based epoxy resins in recent years. First, bio-based epoxy resins were classified according to their unique function, and synthesis strategies of functional bio-based epoxy resins were discussed, then the relationship between structure and performance was revealed to guide the synthesis of functional bio-based epoxy resins and stimulate the development of more types of functional bio-based epoxy resins. Finally, the challenges and opportunities in the development of functional bio-based epoxy resins are presented.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | | | | | - Kan Zhang
- Institute of Polymer Materials, School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
He M, Li J, Xu J, Wu L, Li N, Zhang S. Dynamic Recyclable High-Performance Epoxy Resins via Triazolinedione-Indole Click Reaction and Cation-π Interaction Synergistic Crosslinking. Polymers (Basel) 2024; 16:1900. [PMID: 39000754 PMCID: PMC11243886 DOI: 10.3390/polym16131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024] Open
Abstract
Thermosetting plastics exhibit remarkable mechanical properties and high corrosion resistance, yet the permanent covalent crosslinked network renders these materials challenging for reshaping and recycling. In this study, a high-performance polymer film (EI25-TAD5-Mg) was synthesized by combining click chemistry and cation-π interactions. The internal network of the material was selectively constructed through flexible triazolinedione (TAD) and indole via a click reaction. Cation-π interactions were established between Mg2+ and electron-rich indole units, leading to network contraction and reinforcement. Dynamic non-covalent interactions improved the covalent crosslinked network, and the reversible dissociation of cation-π interactions during loading provided effective energy dissipation. Finally, the epoxy resin exhibited excellent mechanical properties (tensile strength of 91.2 MPa) and latent dynamic behavior. Additionally, the thermal reversibility of the C-N click reaction and dynamic cation-π interaction endowed the material with processability and recyclability. This strategy holds potential value in the field of modifying covalent thermosetting materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuai Zhang
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; (M.H.); (J.L.); (J.X.); (L.W.); (N.L.)
| |
Collapse
|
5
|
Zhang X, Lin L, Zhou H, Zhou G, Wang X. All-natural chitosan-based polyimine vitrimer with multiple advantages: A novel strategy to solve nondegradable plastic waste pollution. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133030. [PMID: 38006859 DOI: 10.1016/j.jhazmat.2023.133030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
The increasing amount of nondegradable petroleum-based plastic waste releases chemical hazards, posing a significant threat to the environment and human health. Chitosan, derived from marine wastes, is an attractive feedstock for the preparation of plastic replacement due to its renewable and degradable nature. However, in most cases, complex chemical modifications of chitosan or hybridization with chemicals from fossil resources are required. Herein, we present a high-performance chitosan-based polyimine vitrimer (CS-PI) through a mild and catalyst-free Schiff base reaction between chitosan and vanillin. The CS-PI were formed by integrating dynamic imine bonds into the polymer networks, resulting in superior thermo-processability and mechanical performances. The tensile strength and Young's modulus of the CS-PI films reached 38.72 MPa and 3.20 GPa, respectively, which was significantly higher than that of both commercial petroleum-based plastics and bioplastics. Additionally, the CS-PI films exhibited good light transmittance, self-healing ability, reprocess capacity, water resistance, and durability to various organic solvents. Moreover, the CS-PI films could be completely degraded under both acidic and natural conditions, enabling a sustainable circulation. Therefore, this work offers a new design strategy for developing all-natural environmentally friendly polymers as sustainable replacements for petroleum-based plastics, thus reducing the accumulation of nondegradable plastic waste.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Leyi Lin
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Haonan Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Guowen Zhou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaohui Wang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Capretti M, Giammaria V, Santulli C, Boria S, Del Bianco G. Use of Bio-Epoxies and Their Effect on the Performance of Polymer Composites: A Critical Review. Polymers (Basel) 2023; 15:4733. [PMID: 38139984 PMCID: PMC10747679 DOI: 10.3390/polym15244733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
This study comprehensively examines recent developments in bio-epoxy resins and their applications in composites. Despite the reliability of traditional epoxy systems, the increasing demand for sustainability has driven researchers and industries to explore new bio-based alternatives. Additionally, natural fibers have the potential to serve as environmentally friendly substitutes for synthetic ones, contributing to the production of lightweight and biodegradable composites. Enhancing the mechanical properties of these bio-composites also involves improving the compatibility between the matrix and fibers. The use of bio-epoxy resins facilitates better adhesion of natural composite constituents, addressing sustainability and environmental concerns. The principles and methods proposed for both available commercial and especially non-commercial bio-epoxy solutions are investigated, with a focus on promising renewable sources like wood, food waste, and vegetable oils. Bio-epoxy systems with a minimum bio-content of 20% are analyzed from a thermomechanical perspective. This review also discusses the effect of incorporating synthetic and natural fibers into bio-epoxy resins both on their own and in hybrid form. A comparative analysis is conducted against traditional epoxy-based references, with the aim of emphasizing viable alternatives. The focus is on addressing their benefits and challenges in applications fields such as aviation and the automotive industry.
Collapse
Affiliation(s)
- Monica Capretti
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Valentina Giammaria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Carlo Santulli
- School of Science and Technology, Geology Division, University of Camerino, Via Gentile III da Varano 7, 62032 Camerino, Italy
| | - Simonetta Boria
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| | - Giulia Del Bianco
- School of Science and Technology, Mathematics Division, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (M.C.); (V.G.); (S.B.); (G.D.B.)
| |
Collapse
|
7
|
Deng L, Wang Z, Qu B, Liu Y, Qiu W, Qi S. A Comparative Study on the Properties of Rosin-Based Epoxy Resins with Different Flexible Chains. Polymers (Basel) 2023; 15:4246. [PMID: 37959926 PMCID: PMC10647691 DOI: 10.3390/polym15214246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
This study aims to reveal the effects of flexible chain lengths on rosin-based epoxy resin's properties. Two rosin-based epoxy monomers with varying chain lengths were synthesized: AR-EGDE (derived from ethylene glycol diglycidyl ether-modified acrylic acid rosin) and ARE (derived from acrylic acid rosin and epichlorohydrin). Diethylenetriamine (DETA), triethylenetetramine (TETA), and tetraethylenepentamine (TEPA) with different flexible chain lengths were used as curing agents. The adhesion, impact, pencil hardness, flexibility, water and heat resistance, and weatherability of the epoxy resins were systematically examined. It was found that when the flexible chains of rosin-based epoxy monomers were grown from ARE to AR-EGDE, due to the increased space of rosin-based fused rings, the toughness, adhesion, and water resistance of the rosin-based epoxy resins were enhanced, while the pencil hardness and heat resistance decreased. However, when the flexible chains of curing agents were lengthened, the resin's performance did not change significantly because the space between the fused rings changed little. This indicates that the properties of the rosin-based resins can only be altered when the introduced flexible chain increases the space between the fused rings. The study also compared rosin-based resins to E20, a commercial petroleum-based epoxy of the bisphenol A type. The rosin-based resins demonstrated superior adhesion, water resistance, and weatherability compared to the E20 resins, indicating the remarkable durability of the rosin-based resin.
Collapse
Affiliation(s)
- Lianli Deng
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China; (L.D.)
| | - Zehua Wang
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Bailu Qu
- Changsha Ecological and Environmental Monitoring Centre of Hunan Province, Changsha 410001, China
| | - Ying Liu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Wei Qiu
- School of Chemical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Shaohe Qi
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds and Applications, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China; (L.D.)
| |
Collapse
|
8
|
Liu Y, Li Z, Zhang C, Yang B, Ren H. A Self-Healing Thermoset Epoxy Modulated by Dynamic Boronic Ester for Powder Coating. Polymers (Basel) 2023; 15:3894. [PMID: 37835943 PMCID: PMC10575017 DOI: 10.3390/polym15193894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Thermoset powder coatings exhibit distinctive characteristics such as remarkable hardness and exceptional resistance to corrosion. In contrast to conventional paints, powder coatings are environmentally friendly due to the absence of volatile organic compounds (VOCs). However, their irreversible cross-linking structures limit their chain segment mobility, preventing polymers from autonomously repairing cracks. Dynamic cross-linking networks have garnered attention for their remarkable self-healing capabilities, facilitated by rapid internal bond exchange. Herein, we introduce an innovative method for synthesizing thermoset epoxy containing boronic ester moieties which could prolong the life of the powder coating. The epoxy resin system relies on the incorporation of two curing agents: one featuring small-molecule diamines with boronic bonds and the other a modified polyurethane prepolymer. A state of equilibrium in mechanical properties was achieved via precise manipulation of the proportions of these agents, with the epoxy composite exhibiting a fracture stress of 67.95 MPa while maintaining a stable glass transition temperature (Tg) of 51.39 °C. This imparts remarkable self-healing ability to the coating surface, capable of returning to its original state even after undergoing 1000 cycles of rubbing (using 1200-grit abrasive paper). Furthermore, the introduction of carbon nanotube nanoparticles enabled non-contact sequential self-healing. Subsequently, we introduce this method into powder coatings of different materials. Therefore, this work provides a strategy to develop functional interior decoration and ensure its potential for broad-ranging applications, such as aerospace, transportation, and other fields.
Collapse
Affiliation(s)
- Yongqi Liu
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ziyuan Li
- School of Biological and Chemical Engineering, Ningbo Tech University, Ningbo 315100, China;
| | - Caifu Zhang
- Tongling Shanwei New Material Technology Inc. Co., Ltd., Tongling 244000, China;
| | - Biru Yang
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hua Ren
- Ningbo Research Institute, Zhejiang University, Ningbo 315807, China; (Y.L.); (B.Y.)
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
9
|
Wang B, Li Z, Liu X, Li L, Yu J, Li S, Guo G, Gao D, Dai Y. Preparation of Epoxy Resin with Disulfide-Containing Curing Agent and Its Application in Self-Healing Coating. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4440. [PMID: 37374623 DOI: 10.3390/ma16124440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Intrinsic self-healing polymers via dynamic covalent bonds have been attracting extensive attention because of their repeatable self-healing property. Herein, a novel self-healing epoxy resin was synthesized with disulfide-containing curing agent via the condensation of dimethyl 3,3'-dithiodipropionate (DTPA) and polyether amine (PEA). Therefore, in the structure of cured resin, flexible molecular chains and disulfide bonds were imported into the cross-linked polymer networks for triggering self-healing performance. The self-healing reaction of cracked samples was realized under a mild condition (60 °C for 6 h). The distribution of flexible polymer segments, disulfide bonds and hydrogen bonds in cross-linked networks plays a great role in the self-healing process of prepared resins. The molar ratio of PEA and DTPA strongly affects the mechanical performance and self-healing property. Especially when that molar ratio of PEA to DTPA is 2, the cured self-healing resin sample showed great ultimate elongation (795%) and excellent healing efficiency (98%). The products can be used as an organic coating, in which the crack could self-repair during a limited time. The corrosion resistance of a typical cure coating sample has been testified by an immersion experiment and electrochemistry impedance spectrum (EIS). This work provided a simple and low-cost route to prepare a self-healing coating for prolonging the service life of conventional epoxy coatings.
Collapse
Affiliation(s)
- Baolei Wang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Zewei Li
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Xinru Liu
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Lulu Li
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Jianxiang Yu
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Shuang Li
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Gaiping Guo
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Dahai Gao
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| | - Yuhua Dai
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, College of New Materials and Chemical Engineering, Beijing 102617, China
| |
Collapse
|
10
|
An ZW, Xue R, Ye K, Zhao H, Liu Y, Li P, Chen ZM, Huang CX, Hu GH. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. NANOSCALE 2023; 15:6505-6520. [PMID: 36883369 DOI: 10.1039/d2nr07110j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.
Collapse
Affiliation(s)
- Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Zhen-Ming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| |
Collapse
|
11
|
Fully rosin-based epoxy vitrimers with high mechanical and thermostability properties, thermo-healing and closed-loop recycling. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Sustainable Polyurethane Networks with High Self‐Healing and Mechanical Properties Based on Dual Dynamic Covalent Bonds. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Recyclable, self-healing itaconic acid-based polyurethane networks with dynamic boronic ester bonds for recoverable adhesion application. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Abdur Rashid M, Liu W, Wei Y, Jiang Q. Review of reversible dynamic bonds containing intrinsically flame retardant biomass thermosets. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Liu Z, Ma Y, Zhang Z, Shi Z, Gao J. Rapid Stress Relaxation, Multistimuli-Responsive Elastomer Based on Dual-Dynamic Covalent Bonds and Aniline Trimer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4812-4819. [PMID: 35417177 DOI: 10.1021/acs.langmuir.1c03241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Covalent adaptable networks (CANs) are an emerging kind of smart materials in which cross-links are reversible upon some stimuli and then provide malleability and a stimuli-responsive ability to the materials. There is a trend to endow CANs with multistimuli-responsive capabilities and rapid stress relaxation to pursue more advanced applications. To integrate these two features into one material, here, dual-dynamic covalent bonds (imines and boronic esters) and aniline trimer (ACAT) were incorporated into the styrene butadiene elastomer as dynamic cross-links. The obtained CANs were demonstrated with rapid stress relaxation and a relatively low activation energy of 36 ± 1 kJ mol-1, resulting from the synergistic effect of dual-dynamic covalent bonds to rearrange the network at a faster rate than for either imines or boronic esters. Because of the dynamic nature of imines or boronic esters, the elastomer can be recycled upon heat. Moreover, the appearance and configuration of the elastomer could also be manipulated by pH and light because of the inclusion of ACAT. All in all, the coupled multistimuli-responsive behavior and rapid stress relaxation in one single elastomer would potentially be applicable for sensors and actuators with good recyclability.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Youwei Ma
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, and Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zongrui Zhang
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Zixing Shi
- School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, and Shanghai Key Lab of Electrical Insulation & Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiangang Gao
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
16
|
Heterogeneous Solid-State Plasticity of a Multi-Functional Metallo-Supramolecular Shape-Memory Polymer towards Arbitrary Shape Programming. Polymers (Basel) 2022; 14:polym14081598. [PMID: 35458348 PMCID: PMC9027464 DOI: 10.3390/polym14081598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 12/10/2022] Open
Abstract
Shape-memory polymers (SMPs) exhibit notable shape-shifting behaviors under environmental stimulations. In a specific shape-memory cycle, the material can be temporarily fixed at diverse geometries while recovering to the same permanent shape driven by the elastic network, which somewhat limits the versatility of SMPs. Via dynamic metallo-supramolecular interactions, herein, we report a multi-functional shape-memory polymer with tunable permanent shapes. The network is constructed by the metallic coordination of a four-armed polycaprolactone with a melting temperature of 54 °C. Owing to the thermo-induced stress relaxation through the bond exchange, the SMPs can be repeatedly programmed into different geometries in their solid state and show the self-welding feature. Via further welding of films crosslinked by different ions, it will present heterogeneous solid-state plasticity, and a more sophisticated shape can be created after the uniform thermal treatment. With elasticity and plasticity in the same network, the SMPs will display programmable shape-shifting behaviors. Additionally, the used material can be recast into a new film which retains the thermo-induced plasticity. Overall, we establish a novel strategy to manipulate the permanent shapes of SMPs through solid-state plasticity and develop a multi-functional shape-shifting material that has many practical applications.
Collapse
|
17
|
Li J, Ning Z, Yang W, Yang B, Zeng Y. Hydroxyl-Terminated Polybutadiene-Based Polyurethane with Self-Healing and Reprocessing Capabilities. ACS OMEGA 2022; 7:10156-10166. [PMID: 35382304 PMCID: PMC8973043 DOI: 10.1021/acsomega.1c06416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 06/12/2023]
Abstract
Hydroxyl-terminated polybutadiene (HTPB)-based polyurethane (PU) networks play indispensable roles in a variety of applications; however, they cannot be reprocessed, resulting in environmental problems and unsustainable industrial development. In this work, recyclable HTPB-based PU vitrimer (HTPB-PUV) networks are fabricated by introduction of a cross-linker 2,2'-(1,4-phenylene)-bis[4-mercaptan-1,3,2-dioxaborolane] (BDB) with dynamic boronic ester bonds into the network. Meanwhile, the BDB can stabilize the HTPB unit in the network by elimination of double bonds. The novel HTPB-PUV networks are constructed by a thiol-ene "click" reaction and an addition reaction between HTPB and cross-linker BDB and isocyanates (HDI). The dynamic HTPB-PUV networks are characterized by dynamic mechanical analysis (DMA) and Fourier transform infrared (FTIR). The obtained dynamic HTPB-PUV networks possess superior thermostability. Moreover, due to the presence of dynamic boronic ester bonds, the HTPB-PUV network topologies can be altered, contributing to the reprocessing, self-healing, and welding abilities of the final polymer. Through a hot press, the pulverized sample can be reprocessed for several cycles, and mechanical properties of the reprocessed samples are similar to those of the pristine one, with the tensile strength being even higher. The self-healed sample exhibits almost complete recovery from scratch after the healing treatment at 130 °C for 3 h. Moreover, a welding efficiency of 120% was achieved.
Collapse
Affiliation(s)
| | | | - Weiming Yang
- College of Material Science
and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Bin Yang
- College of Material Science
and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Yanning Zeng
- College of Material Science
and Engineering, Guilin University of Technology, Guilin 541004, P. R. China
| |
Collapse
|
18
|
Peng S, Sun Y, Ma C, Duan G, Liu Z, Ma C. Recent advances in dynamic covalent bond-based shape memory polymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Dynamic covalent bond-based shape memory polymers (DCB-SMPs) are one of most important SMPs which have a wide potential application prospect. Different from common strong covalent bonds, DCBs own relatively weak bonding energy, similarly to the supramolecular interactions of noncovalent bonds, and can dynamically combine and dissociate these bonds. DCB-SMP solids, which can be designed to respond for different stimuli, can provide excellent self-healing, good reprocessability, and high mechanical performance, because DCBs can obtain dynamic cross-linking without sacrificing ultrahigh fixing rates. Furthermore, besides DCB-SMP solids, DCB-SMP hydrogels with responsiveness to various stimuli also have been developed recently, which have special biocompatible soft/wet states. Particularly, DCB-SMPs can be combined with emerging 3D-printing techniques to design various original shapes and subsequently complex shape recovery. This review has summarized recent research studies about SMPs based on various DCBs including DCB-SMP solids, DCB-SMP hydrogels, and the introduction of new 3D-printing techniques using them. Last but not least, the advantages/disadvantages of different DCB-SMPs have been analyzed via polymeric structures and the future development trends in this field have been predicted.
Collapse
Affiliation(s)
- Shuyi Peng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Ye Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
| | - Chunming Ma
- Shenzhen Institute of Advanced Electronic Materials - Shenzhen Fundamental Research Institutions, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Gaigai Duan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University , Nanjing , 210037 , China
| | - Zhenzhong Liu
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| | - Chunxin Ma
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University , Haikou 570228 , China
- Research Institute of Zhejiang University-Taizhou , Taizhou 318000 , China
| |
Collapse
|
19
|
Vidil T, Llevot A. Fully Biobased Vitrimers: Future Direction Towards Sustainable Cross‐Linked Polymers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Thomas Vidil
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| | - Audrey Llevot
- University of Bordeaux CNRS Bordeaux INP Laboratoire de Chimie des Polymères Organiques UMR 5629, ENSCBP, 16 avenue Pey‐Berland Pessac cedex F‐33607 France
| |
Collapse
|