1
|
Zhang J, Xu J, Zhang J, Lin Y, Li J, Chen D, Lin W, Yang C, Yi G. Poly(Photosensitizer-Prodrug) Unimolecular Micelles for Chemo-Photodynamic Synergistic Therapy of Antitumor and Antibacteria. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14908-14921. [PMID: 39001842 DOI: 10.1021/acs.langmuir.4c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
It is crucial to use simple methods to prepare stable polymeric micelles with multiple functions for cancer treatment. Herein, via a "bottom-up" strategy, we reported the fabrication of β-CD-(PEOSMA-PCPTMA-PPEGMA)21 (βPECP) unimolecular micelles that could simultaneously treat tumors and bacteria with chemotherapy and photodynamic therapy (PDT). The unimolecular micelles consisted of a 21-arm β-cyclodextrin (β-CD) core as a macromolecular initiator, photosensitizer eosin Y (EOS-Y) monomer EOSMA, anticancer drug camptothecin (CPT) monomer, and a hydrophilic shell PEGMA. Camptothecin monomer (CPTMA) could achieve controlled release of the CPT due to the presence of responsively broken disulfide bonds. PEGMA enhanced the biocompatibility of micelles as a hydrophilic shell. Two βPECP with different lengths were synthesized by modulating reaction conditions and the proportion of monomers, which both were self-assembled to unimolecular micelles in water. βPECP unimolecular micelles with higher EOS-Y/CPT content exhibited more excellent 1O2 production, in vitro drug release efficiency, higher cytotoxicity, and superior antibacterial activity. Also, we carried out simulations of the self-assembly and CPT release process of micelles, which agreed with the experiments. This nanosystem, which combines antimicrobial and antitumor functions, provides new ideas for bacteria-mediated tumor clinical chemoresistance.
Collapse
Affiliation(s)
- Jieheng Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianchang Xu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310000, China
| | - Jiaying Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yibin Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Li
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Duoqu Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Chufen Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
- School of Advanced Manufacturing, Guangdong University of Technology, Jieyang 522000, China
| |
Collapse
|
2
|
Al-Roujayee AS, Hilaj E, Deepak A, Jyothi SR, Hamid JA, Ariffin IA, Saraswat V, Garg A. Alginate-based systems: advancements in drug delivery and wound healing. INT J POLYM MATER PO 2024:1-29. [DOI: 10.1080/00914037.2024.2375343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/28/2024] [Indexed: 01/06/2025]
Affiliation(s)
- Abdulaziz S. Al-Roujayee
- Department of Dermatology and Venereology, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Erina Hilaj
- Department of Pharmacy, Faculty of Medical Sciences, Albanian University, Tirana, Albania
| | - A. Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu, India
| | - S. Renuka Jyothi
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - I. A. Ariffin
- Management and Science University, Shah Alam, Malaysia
| | - Vivek Saraswat
- Institute of Engineering and Technology, GLA University, Mathura, Uttar Pradesh, India
| | - Avni Garg
- Department of Applied Sciences, Chandigarh Engineering Colleges, Chandigarh Group of Colleges, Jhanjeri, Mohali, Punjab, India
| |
Collapse
|
3
|
Fabrikov D, Varga ÁT, García MCV, Bélteky P, Kozma G, Kónya Z, López Martínez JL, Barroso F, Sánchez-Muros MJ. Antimicrobial and antioxidant activity of encapsulated tea polyphenols in chitosan/alginate-coated zein nanoparticles: a possible supplement against fish pathogens in aquaculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13673-13687. [PMID: 38261222 PMCID: PMC10881692 DOI: 10.1007/s11356-024-32058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/14/2024] [Indexed: 01/24/2024]
Abstract
Regulation of antibiotic use in aquaculture calls for the emergence of more sustainable alternative treatments. Tea polyphenols (GTE), particularly epigallocatechin gallate (EGCG), have various biological activities. However, tea polyphenols are susceptible to degradation. In this work, EGCG and GTE were encapsulated in zein nanoparticles (ZNP) stabilized with alginate (ALG) and chitosan (CS) to reduce the degradation effect. ALG-coated ZNP and ALG/CS-coated ZNP encapsulating EGCG or GTE were obtained with a hydrodynamic size of less than 300 nm, an absolute ζ-potential value >30 mV, and an encapsulation efficiency greater than 75%. The antioxidant capacity of the encapsulated substances, although lower than that of the free ones, maintained high levels. On the other hand, the evaluation of antimicrobial activity showed greater efficiency in terms of growth inhibition for ALG/CS-ZNP formulations, with average overall values of around 60%, reaching an inhibition of more than 90% for Photobacterium damselae. These results support encapsulation as a good strategy for tea polyphenols, as it allows maintaining significant levels of antioxidant activity and increasing the potential for antimicrobial activity, in addition to increasing protection against sources of degradation.
Collapse
Affiliation(s)
- Dmitri Fabrikov
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain.
| | - Ágnes Timea Varga
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María Carmen Vargas García
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - Péter Bélteky
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged, Hungary
- MTA, Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | | | - Fernando Barroso
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| | - María José Sánchez-Muros
- Department of Biology and Geology, University of Almería-CEIMAR Marine Campus of International Excellence, Almería, Spain
| |
Collapse
|
4
|
Rajasekaran J, Viswanathan P. Anti-bacterial and antibiofilm properties of seaweed polysaccharide-based nanoparticles. AQUACULTURE INTERNATIONAL 2023; 31:2799-2823. [DOI: 10.1007/s10499-023-01111-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/27/2023] [Indexed: 12/19/2024]
|
5
|
Elghobashy SA, Abeer Mohammed AB, Tayel AA, Alshubaily FA, Abdella A. Thyme/garlic essential oils loaded chitosan–alginate nanocomposite: Characterization and antibacterial activities. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
For controlling pathogenic bacteria using nanopolymer composites with essential oils, the formulation of chitosan/alginate nanocomposites (CS/ALG NCs) loaded with thyme oil, garlic oil, and thyme/garlic oil was investigated. Oils were encapsulated in CS/ALG NCs through oil-in-water emulsification and ionic gelation. The CS/ALG NCs loaded with oils of garlic, thyme, and garlic–thyme complex had mean diameters of 143.8, 173.9, and 203.4 nm, respectively. They had spherical, smooth surfaces, and zeta potential of +28.4 mV for thyme–garlic-loaded CS/ALG NCs. The bactericidal efficacy of loaded NCs with mixed oils outperformed individual loaded oils and ampicillin, against foodborne pathogens. Staphylococcus aureus was the most susceptible (with 28.7 mm inhibition zone and 12.5 µg·mL−1 bactericidal concentration), whereas Escherichia coli was the most resistant (17.5 µg·mL−1 bactericidal concentration). Scanning electron microscopy images of bacteria treated with NCs revealed strong disruptive effects on S. aureus and Aeromonas hydrophila cells; treated cells were totally exploded or lysed within 8 h. These environmentally friendly nanosystems might be a viable alternative to synthetic preservatives and be of interest in terms of health and food safety.
Collapse
Affiliation(s)
- Shrifa A. Elghobashy
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - A. B. Abeer Mohammed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| | - Ahmed A. Tayel
- Department of Fish Processing and Biotechnology, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University , Jeddah , Saudi Arabia
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City (USC) , El-Sadat City 32897 , Egypt
| |
Collapse
|
6
|
Nanoparticles for Antimicrobial Agents Delivery-An Up-to-Date Review. Int J Mol Sci 2022; 23:ijms232213862. [PMID: 36430343 PMCID: PMC9696780 DOI: 10.3390/ijms232213862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Infectious diseases constitute an increasing threat to public health and medical systems worldwide. Particularly, the emergence of multidrug-resistant pathogens has left the pharmaceutical arsenal unarmed to fight against such severe microbial infections. Thus, the context has called for a paradigm shift in managing bacterial, fungal, viral, and parasitic infections, leading to the collision of medicine with nanotechnology. As a result, renewed research interest has been noted in utilizing various nanoparticles as drug delivery vehicles, aiming to overcome the limitations of current treatment options. In more detail, numerous studies have loaded natural and synthetic antimicrobial agents into different inorganic, lipid, and polymeric-based nanomaterials and tested them against clinically relevant pathogens. In this respect, this paper reviews the most recently reported successfully fabricated nanoformulations that demonstrated a great potential against bacteria, fungi, viruses, and parasites of interest for human medicine.
Collapse
|
7
|
Son Phan K, Thu Huong Le T, Minh Nguyen T, Thu Trang Mai T, Ha Hoang P, Thang To X, Trung Nguyen T, Dang Pham K, Thu Ha P. Co‐delivery of Doxycycline, Florfenicol and Silver Nanoparticles using Alginate/Chitosan Nanocarriers. ChemistrySelect 2022. [DOI: 10.1002/slct.202201954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ke Son Phan
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thi Thu Huong Le
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Thi Minh Nguyen
- Institute of Biotechnology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thi Thu Trang Mai
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Phuong Ha Hoang
- Institute of Biotechnology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Xuan Thang To
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| | - Thanh Trung Nguyen
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Kim Dang Pham
- Vietnam National University of Agriculture Trau Quy, Gia Lam District Hanoi Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science Vietnam Academy of Science and Technology 18 Hoang Quoc Viet Road, Cau Giay District Hanoi Vietnam
| |
Collapse
|
8
|
Yang X, Ma W, Lin H, Ao S, Liu H, Zhang H, Tang W, Xiao H, Wang F, Zhu J, Liu D, Lin S, Zhang Y, Zhou Z, Chen C, Liang H. Molecular mechanisms of the antibacterial activity of polyimide fibers in a skin-wound model with Gram-positive and Gram-negative bacterial infection in vivo. NANOSCALE ADVANCES 2022; 4:3043-3053. [PMID: 36133513 PMCID: PMC9479675 DOI: 10.1039/d2na00221c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/01/2022] [Indexed: 06/16/2023]
Abstract
Recently, the need for antibacterial dressings has amplified because of the increase of traumatic injuries. However, there is still a lack of ideal, natural antibacterial dressings that show an efficient antibacterial property with no toxicity. Polyimide (PI) used as an implantable and flexible material has been recently reported as a mixture of particles showing more desirable antibacterial properties. However, we have identified a novel type of natural polyimide (PI) fiber that revealed antibacterial properties by itself for the first time. The PI fiber material is mainly composed of C, N, and O, and contains a small amount of Ca and Cl; the characteristic peaks of polyimide appear at 1774 cm-1, 1713 cm-1, 1370 cm-1, 1087 cm-1, and 722 cm-1. PI fibers displayed significant antibacterial activities against Escherichia coli (as a Gram-negative bacteria model) and methicillin-resistant Staphylococcus aureus (MRSA, as a Gram-positive bacteria model) according to the time-kill kinetics in vitro, and PI fibers damaged both bacterial cell walls directly. PI fibers efficiently ameliorated a local infection in vivo, inhibited the bacterial burden, decreased infiltrating macrophages, and accelerated wound healing in an E. coli- or MRSA-infected wound model. In conclusion, PI fibers used in the present study may act as potent antibacterial dressings protecting from MRSA or E. coli infections and as promising candidates for antimicrobial materials for trauma and surgical applications.
Collapse
Affiliation(s)
- Xia Yang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Wei Ma
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Hua Lin
- Faculty of Materials and Energy, Southwest University Chongqing 400715 P. R. China
| | - Shengxiang Ao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Haoru Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Hao Zhang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Wanqi Tang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Hongyan Xiao
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Fangjie Wang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Junyu Zhu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Daoyan Liu
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| | - Shujun Lin
- Changchun HiPolyking Co. Ltd. No. 666B, Super Street Jilin 132000 P. R.China
| | - Ying Zhang
- Shanghai Kington Technology Limited 8 Jinian Road Shanghai 200433 P. R. China
| | - Zhongfu Zhou
- School of Materials Science & Engineering, Shanghai University 99 Shangda Road Shanghai 200444 P. R. China
| | - Changbin Chen
- The Center for Microbes, Development, and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences Shanghai 200031 P. R. China
| | - Huaping Liang
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University) Chongqing 400042 P. R. China
| |
Collapse
|
9
|
Chitosan-Sodium alginate-Polyethylene glycol-Crocin nanocomposite treatment inhibits esophageal cancer KYSE-150 cell growth via inducing apoptotic cell death. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
10
|
Niculescu AG, Grumezescu AM. Applications of Chitosan-Alginate-Based Nanoparticles-An Up-to-Date Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:186. [PMID: 35055206 PMCID: PMC8778629 DOI: 10.3390/nano12020186] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/02/2022] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chitosan and alginate are two of the most studied natural polymers that have attracted interest for multiple uses in their nano form. The biomedical field is one of the domains benefiting the most from the development of nanotechnology, as increasing research interest has been oriented to developing chitosan-alginate biocompatible delivery vehicles, antimicrobial agents, and vaccine adjuvants. Moreover, these nanomaterials of natural origin have also become appealing for environmental protection (e.g., water treatment, environmental-friendly fertilizers, herbicides, and pesticides) and the food industry. In this respect, the present paper aims to discuss some of the newest applications of chitosan-alginate-based nanomaterials and serve as an inception point for further research in the field.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
11
|
Moreno-Lanceta A, Medrano-Bosch M, Edelman ER, Melgar-Lesmes P. Polymeric Nanoparticles for Targeted Drug and Gene Delivery Systems. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:561-608. [DOI: 10.1007/978-3-031-12658-1_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|