1
|
Kemala P, Khairan K, Ramli M, Helwani Z, Rusyana A, Lubis VF, Ahmad K, Idroes GM, Noviandy TR, Idroes R. Optimizing antimicrobial synergy: Green synthesis of silver nanoparticles from Calotropis gigantea leaves enhanced by patchouli oil. NARRA J 2024; 4:e800. [PMID: 39280303 PMCID: PMC11392007 DOI: 10.52225/narra.v4i2.800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 09/18/2024]
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have gained attention for their potential applications in biomedicine. Calotropis gigantea has been utilized to synthesize AgNPs, called AgNPs-LCg, and exhibit antibacterial activities against both Gram-positive and Gram-negative bacteria as well as antifungal. However, further enhancement of their antimicrobial properties is needed. The aim of this study was to synthesize AgNPs-LCg and to enhance their antimicrobial and antifungal activities through a hybrid green synthesis reaction using patchouli oil (PO), as well as to characterize the synthesized AgNPs-LCg. Optimization was conducted using the response surface method (RSM) with a central composite design (CCD). AgNPs-LCg were synthesized under optimal conditions and hybridized with different forms of PO-crude, distillation wastewater (hydrolate), and heavy and light fractions-resulting in PO-AgNPs-LCg, PH-AgNPs-LCg, LP-AgNPs-LCg, and HP-AgNPs-LCg, respectively. The samples were then tested for their antibacterial (both Gram-positive and Gram-negative bacteria) and antifungal activities. Our data indicated that all samples, including those with distillation wastewater, had enhanced antimicrobial activity. HP-AgNPs-LCg, however, had the highest efficacy; therefore, only HP-AgNPs-LCg proceeded to the characterization stage for comparison with AgNPs-LCg. UV-Vis spectrophotometry indicated surface plasmon resonance (SPR) peaks at 400 nm for AgNPs-LCg and 360 nm for HP-AgNPs-LCg. The Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of O-H, N-H, and C-H groups in C. gigantea extract and AgNP samples. The smallest AgNPs-LCg were 56 nm, indicating successful RSM optimization. Scanning electron microscopy (SEM) analysis revealed spherical AgNPs-LCg and primarily cubic HP-AgNPs-LCg, with energy-dispersive X-ray spectroscopy (EDX) confirming silver's predominance. This study demonstrated that PO in any form significantly enhances the antimicrobial properties of AgNPs-LCg. The findings pave the way for the exploration of enhanced and environmentally sustainable antimicrobial agents, capitalizing on the natural resources found in Aceh Province, Indonesia.
Collapse
Affiliation(s)
- Pati Kemala
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairan Khairan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Muliadi Ramli
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Zuchra Helwani
- Department of Chemical Engineering, Universitas Riau, Pekanbaru, Indonesia
| | - Asep Rusyana
- Department of Statistics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Vanizra F Lubis
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Khairunnas Ahmad
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Ghazi M Idroes
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Occupational Health and Safety, Faculty of Health Science, Universitas Abulyatama, Aceh Besar, Indonesia
| | - Teuku R Noviandy
- Department of Informatics, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rinaldi Idroes
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Pusat Riset Obat Herbal, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
2
|
Zeng Y, Li Z, Chen Y, Li W, Wang HB, Shen Y. Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade. Genomics 2023; 115:110643. [PMID: 37217084 DOI: 10.1016/j.ygeno.2023.110643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/06/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023]
Abstract
MYB family is one of the largest transcription factor families in plants and plays a crucial role in regulating plant biochemical and physiological processes. However, R2R3-MYBs in patchouli have not been systematically investigated. Here, based on the gene annotation of patchouli genome sequence, 484 R2R3-MYB transcripts were detected. Further in-depth analysis of the gene structure and expression of R2R3-MYBs supported the tetraploid hybrid origin of patchouli. When combined with R2R3-MYBs from Arabidopsis, a phylogenetic tree of patchouli R2R3-MYBs was constructed and divided into 31 clades. Interestingly, a patchouli-specific R2R3-MYB clade was found and confirmed by homologous from other Lamiaceae species. The syntenic analysis demonstrated that tandem duplication contributed to its evolution. This study systematically analysed the R2R3-MYB family in patchouli, providing information on its gene characterization, functional prediction, and species evolution.
Collapse
Affiliation(s)
- Ying Zeng
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhipeng Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yiqiong Chen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Li
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hong-Bin Wang
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yanting Shen
- Institute of Medicinal Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Karnwal A, Shrivastava S, Al-Tawaha ARMS, Kumar G, Singh R, Kumar A, Mohan A, Yogita, Malik T. Microbial Biosurfactant as an Alternate to Chemical Surfactants for Application in Cosmetics Industries in Personal and Skin Care Products: A Critical Review. BIOMED RESEARCH INTERNATIONAL 2023; 2023:2375223. [PMID: 37090190 PMCID: PMC10118887 DOI: 10.1155/2023/2375223] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 04/25/2023]
Abstract
Cosmetics and personal care items are used worldwide and administered straight to the skin. The hazardous nature of the chemical surfactant utilized in the production of cosmetics has caused alarm on a global scale. Therefore, bacterial biosurfactants (BS) are becoming increasingly popular in industrial product production as a biocompatible, low-toxic alternative surfactant. Chemical surfactants can induce allergic responses and skin irritations; thus, they should be replaced with less harmful substances for skin health. The cosmetic industry seeks novel biological alternatives to replace chemical compounds and improve product qualities. Most of these chemicals have a biological origin and can be obtained from plant, bacterial, fungal, and algal sources. Various biological molecules have intriguing capabilities, such as biosurfactants, vitamins, antioxidants, pigments, enzymes, and peptides. These are safe, biodegradable, and environmentally friendly than chemical options. Plant-based biosurfactants, such as saponins, offer numerous advantages over synthetic surfactants, i.e., biodegradable, nontoxic, and environmentally friendly nature. Saponins are a promising source of natural biosurfactants for various industrial and academic applications. However, microbial glycolipids and lipopeptides have been used in biotechnology and cosmetics due to their multifunctional character, including detergency, emulsifying, foaming, and skin moisturizing capabilities. In addition, some of them have the potential to be used as antibacterial agents. In this review, we like to enlighten the application of microbial biosurfactants for replacing chemical surfactants in existing cosmetic and personal skincare pharmaceutical formulations due to their antibacterial, skin surface moisturizing, and low toxicity characteristics.
Collapse
Affiliation(s)
- Arun Karnwal
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Shrivastava
- Department of Plant Pathology, School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | | | - Gaurav Kumar
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rattandeep Singh
- Department of Molecular Biology and Genetic Engineering, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anupam Kumar
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Anand Mohan
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yogita
- Department of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Ethiopia
| |
Collapse
|
4
|
Zhao W, Wang Y, Li Q. Study on Experiment and Simulation of Shear Force on Membrane with Dynamic Cross-Flow for Lignin in Black Liquor. Polymers (Basel) 2023; 15:polym15020380. [PMID: 36679261 PMCID: PMC9867077 DOI: 10.3390/polym15020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
To address the problem of lignin membrane fouling caused by dynamic cross-flow in the process of retaining and concentrating the black liquor byproduct of papermaking, this paper uses three different rotating structures (vane, disk and propeller) to increase the surface shear force and filtration flux of the membrane. In this paper, under different rotating speeds and different transmembrane pressure differences, numerical simulations were conducted on the shear forces generated by the three structures and the retention process on the surface of the membrane. The variation laws were also studied and compared. Under the same filtration conditions, the vane structure demonstrates better results than the propeller and disk structures in terms of increasing filtration flux. Based on the result, the vane shear force was simulated in terms of changing the particle deposition, and compared with vane rotating speeds of 100-700 r/min, the surface particle deposition of the membrane was significantly reduced at a rotating speed of 800 r/min. Finally, the numerical simulation results were experimentally validated to ensure the accuracy of the simulation. The findings provide a theoretical basis and practical value for solving the problem of lignin membrane fouling caused by dynamic cross-flow in the process of retaining and concentrating the black liquor byproduct of papermaking.
Collapse
Affiliation(s)
- Wenjie Zhao
- College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Yu Wang
- College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Qingdang Li
- College of Sino-German Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
- Correspondence:
| |
Collapse
|
5
|
Polylactic acid nanocomposites containing functionalized multiwalled carbon nanotubes as antimicrobial packaging materials. Int J Biol Macromol 2022; 213:55-69. [DOI: 10.1016/j.ijbiomac.2022.05.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/05/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
|
6
|
Fahrina A, Arahman N, Aprilia S, Bilad MR, Silmina S, Sari WP, Sari IM, Gunawan P, Pasaoglu ME, Vatanpour V, Koyuncu I, Rajabzadeh S. Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane. Polymers (Basel) 2022; 14:polym14091908. [PMID: 35567077 PMCID: PMC9102394 DOI: 10.3390/polym14091908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane-based processes are a promising technology in water and wastewater treatments, to supply clean and secure water. However, during membrane filtration, biofouling phenomena severely hamper the performance, leading to permanent detrimental impacts. Moreover, regular chemical cleaning is ineffective in the long-run for overcoming biofouling, because it weakens the membrane structure. Therefore, the development of a membrane material with superior anti-biofouling performance is seen as an attractive option. Hydrophilic-anti-bacterial precursor polyethylene glycol-silver nanoparticles (PEG-AgNPs) were synthesized in this study, using a sol-gel method, to mitigate biofouling on the polyethersulfone (PES) membrane surface. The functionalization of the PEG-AgNP hybrid material on a PES membrane was achieved through a simple blending technique. The PES/PEG-AgNP membrane was manufactured via the non-solvent induced phase separation method. The anti-biofouling performance was experimentally measured as the flux recovery ratio (FRR) of the prepared membrane, before and after incubation in E. coli culture for 48 h. Nanomaterial characterization confirmed that the PEG-AgNPs had hydrophilic-anti-bacterial properties. The substantial improvements in membrane performance after adding PEG-AgNPs were evaluated in terms of the water flux and FRR after the membranes experienced biofouling. The results showed that the PEG-AgNPs significantly increased the water flux of the PES membrane, from 2.87 L·m−2·h−1 to 172.84 L·m−2·h−1. The anti-biofouling performance of the PES pristine membrane used as a benchmark showed only 1% FRR, due to severe biofouling. In contrast, the incorporation of PEG-AgNPs in the PES membrane decreased live bacteria by 98%. It enhanced the FRR of anti-biofouling up to 79%, higher than the PES/PEG and PES/Ag membranes.
Collapse
Affiliation(s)
- Afrillia Fahrina
- Doctoral Program, School of Engineering, Post Graduate Program, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia;
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
- Research Center for Environmental and Natural Resources, Universitas Syiah Kuala, Jl. Hamzah Fansuri, No. 4, Banda Aceh 23111, Indonesia
- Atsiri Research Center, PUI, Universitas Syiah Kuala, Jl. Syeh A Rauf, No. 5, Banda Aceh 23111, Indonesia
- Correspondence:
| | - Sri Aprilia
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
- Graduate School of Environmental Management, Universitas Syiah Kuala, Jl. Tgk. Chik Pante Kulu No. 5, Banda Aceh 23111, Indonesia
| | - Muhammad Roil Bilad
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong BE 1410, Brunei Darussalam;
| | - Silmina Silmina
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Widia Puspita Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Indah Maulana Sari
- Department of Chemical Engineering, Universitas Syiah Kuala, Jl. Syeh A. Rauf, No. 7, Banda Aceh 23111, Indonesia; (S.A.); (S.S.); (W.P.S.); (I.M.S.)
| | - Poernomo Gunawan
- School of Chemical and Biomedical Engineering, Nanyang Technological, University Singapore, Singapore 627833, Singapore;
| | - Mehmet Emin Pasaoglu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| | - Vahid Vatanpour
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, Istanbul 34469, Turkey; (M.E.P.); (V.V.); (I.K.)
| | - Saeid Rajabzadeh
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Rokkodai-Cho 1-1, Nadaku, Kobe 657-0000, Japan;
| |
Collapse
|