Ma J, Song J. Multifunctional slippery photothermal coating.
J Colloid Interface Sci 2024;
653:1548-1556. [PMID:
37806062 DOI:
10.1016/j.jcis.2023.09.197]
[Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Slippery liquid-infused porous surface (SLIPS) has shown significant application values in various areas and has been commonly obtained by injecting the water-immiscible lubricant into a low-surface-energy modified micro/nano-structured surface. Constrained by the availability of desirable structured substrates or simple preparation schemes, the exploration of SLIPS with multifunctionality and universality that is facile to fabricate and robust in realistic applications remains challenging. Herein, we propose a one-step, fluoride-free and unconventional protocol based on a one-pot reaction of polysilazane (PSZ), silicone oils and multiwalled carbon nanotubes (MWCNT), which creates not only the favorable micro/nano-scale physical structures and surface chemistry for the excellent slippery property (sliding angle < 3°) and robust lubricant retention, but also the superior photothermal responsiveness for the potential multifunctional applications. It has been demonstrated that the proposed multifunctional slippery photothermal coating (MSPC) displayed outstanding potential in corrosion resistance, droplet manipulation and anti/de-icing. We envision that the proposed strategy could be realized in the real-life applications.
Collapse