1
|
Sergeenko OM, Savin DM, Gabrielyan A, Arestova YS, Ryabykh SO, Burtsev AV, Evsyukov AV. Optimizing sacral screw fixation in patients with caudal regression syndrome. Spine Deform 2025; 13:211-219. [PMID: 39283538 DOI: 10.1007/s43390-024-00968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/01/2024] [Indexed: 01/14/2025]
Abstract
PURPOSE The aim of this study is to evaluate and compare techniques and outcomes associated with two different technique of pelvic screw insertion in patients with caudal spine absence. METHODS A cohort of patients with varying degrees of caudal structural regression, serves as the focal point of this investigation. Pelvic configurations were classified based on established criteria to facilitate comparative analysis. Each patient underwent spinal surgical interventions, with a follow-up period extending beyond 2 years. The primary surgical interventions predominantly involved spinal stabilization coupled with correction of scoliosis and kyphosis through one or two pairs of pelvic screws. RESULTS In this study, we investigated a cohort of 22 patients with caudal spine absence, encompassing diverse conditions, such as lumbo-sacral aplasia, hemisacrum, and lumbar absence, with preserved sacrum. Following spinal surgery, notable improvements were observed in scoliosis and pathological lumbar kyphosis, with several patients achieving significant functional milestones such as independent ambulation. There were no significant differences in short-term complications between patients undergoing single versus double pair pelvic screw implantation. Long-term complications, primarily non-fusion, were notably more prevalent in patients undergoing fixation with a single pair of pelvic screws. CONCLUSION Surgical intervention, particularly spinopelvic fixation, demonstrated promising outcomes in terms of improving spinal deformities. The implantation of two pairs of pelvic screws demonstrates greater reliability compared to the insertion of a single pair, diminishing the risk of non-fusion.
Collapse
Affiliation(s)
| | - Dmitry M Savin
- Division of Spinal Surgery, Ilizarov Center, Kurgan, Russia
| | | | | | - Sergey O Ryabykh
- Pirogov's Russian National Medical University, Moscow, Russia
- Department of Traumatology and Orthopedics, St. Petersburg State University, St. Petersburg, Russia
| | | | | |
Collapse
|
2
|
Ryabov NA, Volova LT, Alekseev DG, Kovaleva SA, Medvedeva TN, Vlasov MY. Mass Spectrometry of Collagen-Containing Allogeneic Human Bone Tissue Material. Polymers (Basel) 2024; 16:1895. [PMID: 39000751 PMCID: PMC11244277 DOI: 10.3390/polym16131895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
The current paper highlights the active development of tissue engineering in the field of the biofabrication of living tissue analogues through 3D-bioprinting technology. The implementation of the latter is impossible without important products such as bioinks and their basic components, namely, hydrogels. In this regard, tissue engineers are searching for biomaterials to produce hydrogels with specified properties both in terms of their physical, mechanical and chemical properties and in terms of local biological effects following implantation into an organism. One of such effects is the provision of the optimal conditions for physiological reparative regeneration by the structural components that form the basis of the biomaterial. Therefore, qualitative assessment of the composition of the protein component of a biomaterial is a significant task in tissue engineering and bioprinting. It is important for predicting the behaviour of printed constructs in terms of their gradual resorption followed by tissue regeneration due to the formation of a new extracellular matrix. One of the most promising natural biomaterials with significant potential in the production of hydrogels and the bioinks based on them is the polymer collagen of allogeneic origin, which plays an important role in maintaining the structural and biological integrity of the extracellular matrix, as well as in the morphogenesis and cellular metabolism of tissues, giving them the required mechanical and biochemical properties. In tissue engineering, collagen is widely used as a basic biomaterial because of its availability, biocompatibility and facile combination with other materials. This manuscript presents the main results of a mass spectrometry analysis (proteomic assay) of the lyophilized hydrogel produced from the registered Lyoplast® bioimplant (allogeneic human bone tissue), which is promising in the field of biotechnology. Proteomic assays of the investigated lyophilized hydrogel sample showed the presence of structural proteins (six major collagen fibers of types I, II, IV, IX, XXVII, XXVIII were identified), extracellular matrix proteins, and mRNA-stabilizing proteins, which participate in the regulation of transcription, as well as inducer proteins that mediate the activation of regeneration, including the level of circadian rhythm. The research results offer a new perspective and indicate the significant potential of the lyophilized hydrogels as an effective alternative to synthetic and xenogeneic materials in regenerative medicine, particularly in the field of biotechnology, acting as a matrix and cell-containing component of bioinks for 3D bioprinting.
Collapse
Affiliation(s)
- Nikolay A. Ryabov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Larisa T. Volova
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Denis G. Alekseev
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Svetlana A. Kovaleva
- Core Shared Research Facility “Industrial Biotechnologies”, Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences, 117312 Moscow, Russia;
| | - Tatyana N. Medvedeva
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| | - Mikhail Yu. Vlasov
- Research Institute of Biotechnology “BioTech”, Samara State Medical University of the Ministry of Health of the Russian Federation, 443079 Samara, Russia; (N.A.R.); (L.T.V.); (M.Y.V.)
| |
Collapse
|
3
|
Hudiță A, Gălățeanu B. Polymer Materials for Drug Delivery and Tissue Engineering. Polymers (Basel) 2023; 15:3103. [PMID: 37514492 PMCID: PMC10385964 DOI: 10.3390/polym15143103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, the biomedical engineering field has seen remarkable advancements, focusing mainly on developing novel solutions for enhancing tissue regeneration or improving therapeutic outcomes [...].
Collapse
Affiliation(s)
- Ariana Hudiță
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania
| | - Bianca Gălățeanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei Street, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Volova LT, Kotelnikov GP, Shishkovsky I, Volov DB, Ossina N, Ryabov NA, Komyagin AV, Kim YH, Alekseev DG. 3D Bioprinting of Hyaline Articular Cartilage: Biopolymers, Hydrogels, and Bioinks. Polymers (Basel) 2023; 15:2695. [PMID: 37376340 DOI: 10.3390/polym15122695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
The musculoskeletal system, consisting of bones and cartilage of various types, muscles, ligaments, and tendons, is the basis of the human body. However, many pathological conditions caused by aging, lifestyle, disease, or trauma can damage its elements and lead to severe disfunction and significant worsening in the quality of life. Due to its structure and function, articular (hyaline) cartilage is the most susceptible to damage. Articular cartilage is a non-vascular tissue with constrained self-regeneration capabilities. Additionally, treatment methods, which have proven efficacy in stopping its degradation and promoting regeneration, still do not exist. Conservative treatment and physical therapy only relieve the symptoms associated with cartilage destruction, and traditional surgical interventions to repair defects or endoprosthetics are not without serious drawbacks. Thus, articular cartilage damage remains an urgent and actual problem requiring the development of new treatment approaches. The emergence of biofabrication technologies, including three-dimensional (3D) bioprinting, at the end of the 20th century, allowed reconstructive interventions to get a second wind. Three-dimensional bioprinting creates volume constraints that mimic the structure and function of natural tissue due to the combinations of biomaterials, living cells, and signal molecules to create. In our case-hyaline cartilage. Several approaches to articular cartilage biofabrication have been developed to date, including the promising technology of 3D bioprinting. This review represents the main achievements of such research direction and describes the technological processes and the necessary biomaterials, cell cultures, and signal molecules. Special attention is given to the basic materials for 3D bioprinting-hydrogels and bioinks, as well as the biopolymers underlying the indicated products.
Collapse
Affiliation(s)
- Larisa T Volova
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Gennadiy P Kotelnikov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Igor Shishkovsky
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Dmitriy B Volov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Natalya Ossina
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Nikolay A Ryabov
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Aleksey V Komyagin
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| | - Yeon Ho Kim
- RokitHealth Care Ltd., 9, Digital-ro 10-gil, Geumcheon-gu, Seoul 08514, Republic of Korea
| | - Denis G Alekseev
- Research and Development Institute of Biotechnologies, Samara State Medical University, Chapayevskaya St. 89, 443099 Samara, Russia
| |
Collapse
|
5
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
6
|
Tsiklin IL, Shabunin AV, Kolsanov AV, Volova LT. In Vivo Bone Tissue Engineering Strategies: Advances and Prospects. Polymers (Basel) 2022; 14:polym14153222. [PMID: 35956735 PMCID: PMC9370883 DOI: 10.3390/polym14153222] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 12/12/2022] Open
Abstract
Reconstruction of critical-sized bone defects remains a tremendous challenge for surgeons worldwide. Despite the variety of surgical techniques, current clinical strategies for bone defect repair demonstrate significant limitations and drawbacks, including donor-site morbidity, poor anatomical match, insufficient bone volume, bone graft resorption, and rejection. Bone tissue engineering (BTE) has emerged as a novel approach to guided bone tissue regeneration. BTE focuses on in vitro manipulations with seed cells, growth factors and bioactive scaffolds using bioreactors. The successful clinical translation of BTE requires overcoming a number of significant challenges. Currently, insufficient vascularization is the critical limitation for viability of the bone tissue-engineered construct. Furthermore, efficacy and safety of the scaffolds cell-seeding and exogenous growth factors administration are still controversial. The in vivo bioreactor principle (IVB) is an exceptionally promising concept for the in vivo bone tissue regeneration in a predictable patient-specific manner. This concept is based on the self-regenerative capacity of the human body, and combines flap prefabrication and axial vascularization strategies. Multiple experimental studies on in vivo BTE strategies presented in this review demonstrate the efficacy of this approach. Routine clinical application of the in vivo bioreactor principle is the future direction of BTE; however, it requires further investigation for overcoming some significant limitations.
Collapse
Affiliation(s)
- Ilya L. Tsiklin
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
- Correspondence: ; Tel.: +7-903-621-81-88
| | - Aleksey V. Shabunin
- City Clinical Hospital Botkin, Moscow Healthcare Department, 125284 Moscow, Russia
| | - Alexandr V. Kolsanov
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| | - Larisa T. Volova
- Biotechnology Center “Biotech”, Samara State Medical University, 443079 Samara, Russia
| |
Collapse
|