1
|
Demirci F. Development of Curcumin-Loaded TiO 2-Reinforced Chitosan Monofilaments for Biocompatible Surgical Sutures. Polymers (Basel) 2025; 17:484. [PMID: 40006145 PMCID: PMC11859642 DOI: 10.3390/polym17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Sutures provide mechanical support for wound closure after various traumas and surgical operations. Absorbable sutures are increasingly favored as they eliminate the need for secondary procedures and minimize additional damage to the wound site. In this study, chitosan sutures were produced using the dry jet-wet spinning method, achieving number 7-0 sutures (approximately 76 μm diameter) with a homogeneous surface. FTIR analysis demonstrated molecular interactions between chitosan and TiO2 or curcumin, confirming successful incorporation. The addition of 3% TiO2 increased the tensile strength of chitosan sutures by 12.32%, reaching 189.41 MPa. Morphological analysis revealed smooth surfaces free of pores and bubbles, confirming the production of high-quality sutures. Radical scavenging activity analysis showed that curcumin-loaded sutures exhibited 43% scavenging ability after 125 h, which was significantly higher compared to pure chitosan sutures. In vitro antibacterial tests demonstrated that curcumin-loaded sutures provided 98.87% bacterial inactivation against S. aureus within 24 h. Additionally, curcumin release analysis showed a cumulative release of 77% over 25 h. The bioactivity of the sutures was verified by hydroxyapatite layer formation after incubation in simulated body fluid, supporting their potential for tissue regeneration. These findings demonstrate that TiO2 reinforcement and curcumin loading significantly enhance the functional properties of chitosan sutures, making them strong candidates for biocompatible and absorbable surgical applications.
Collapse
Affiliation(s)
- Fatma Demirci
- Department of Polymer Materials Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, 16310 Bursa, Türkiye
| |
Collapse
|
2
|
Yadav H, Malviya R, Kaushik N. Chitosan in biomedicine: A comprehensive review of recent developments. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2024; 8:100551. [DOI: 10.1016/j.carpta.2024.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
|
3
|
Mei Z, Szczepanski CR, Montreuil O, Kuzhir P, Godeau G. Investigation on novel chitin and chitosan from dung beetle Heteronitis castelnaui (Harold, 1865) and its potential application for organic dyes removal from aqueous solution. Int J Biol Macromol 2024; 280:135605. [PMID: 39288848 DOI: 10.1016/j.ijbiomac.2024.135605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chitosan, a natural polysaccharide, has attracted considerable attention as an environmentally friendly and highly efficient adsorbent for dye removal. It is usually produced by deacetylation or partial deacetylation of chitin. However, conventional sources of chitin and chitosan are limited, prompting the need for alternative sources with improved adsorption capabilities. Herein, this study focuses on exploring a novel chitin and chitosan source derived from the dung beetle and evaluates its potential for organic dye removal from aqueous solutions. The research involves the extraction and characterization of chitin and chitosan from dung beetle Heteronitis castelnaui (Harold, 1865) using various analytical techniques, including SEM, FT-IR, TGA, XRD, NMR, deacetylation degree and elemental analysis. The chitosan obtained was used for the formation of hydrogels with sodium alginate via cross-linking with calcium chloride. And then the prepared hydrogels were evaluated for its adsorption capacity through batch adsorption experiments using methylene blue as a model pollutant. The adsorption capacity for methylene blue was 1294.3 mg/g at room temperature with solution pH = 12, MB concentration of 1800 mg/L. Furthermore, the kinetics of the adsorption process were analyzed using pseudo-first-order and pseudo-second-order models to understand the rate of adsorption. The maximum adsorption capacities were determined using Langmuir and Freundlich isotherm models. This study provides valuable insights for the development of sustainable dye adsorption technologies, specifically investigating a novel chitosan source derived from the dung beetle.
Collapse
Affiliation(s)
- Zhenying Mei
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
| | - Olivier Montreuil
- UMR 7179 MNHN/CNRS, MECADEV, Muséum National d'Histoire Naturelle, Entomologie, CP 50, 45 rue Buffon, 75231, Paris cedex 05, France
| | - Pavel Kuzhir
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France
| | - Guilhem Godeau
- Université Côte d'Azur, CNRS UMR 7010 INPHYNI, 17 rue Julien Laupêtre, 06200 Nice, France; Université Côte d'Azur, IMREDD, 06200 Nice, France.
| |
Collapse
|
4
|
Zhang R, Chang SJ, Jing Y, Wang L, Chen CJ, Liu JT. Application of chitosan with different molecular weights in cartilage tissue engineering. Carbohydr Polym 2023; 314:120890. [PMID: 37173038 DOI: 10.1016/j.carbpol.2023.120890] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Cartilage tissue engineering involves the invention of novel implantable cartilage replacement materials to help heal cartilage injuries that do not heal themselves, aiming to overcome the shortcomings of current clinical cartilage treatments. Chitosan has been widely used in cartilage tissue engineering because of its similar structure to glycine aminoglycan, which is widely distributed in connective tissues. The molecular weight, as an important structural parameter of chitosan, affects not only the method of chitosan composite scaffold preparation but also the effect on cartilage tissue healing. Thus, this review identifies methods for the preparation of chitosan composite scaffolds with low, medium and high molecular weights, as well as a range of chitosan molecular weights appropriate for cartilage tissue repair, by summarizing the application of different molecular weights of chitosan in cartilage repair in recent years.
Collapse
Affiliation(s)
- Runjie Zhang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yanzhen Jing
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - LiYuan Wang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Liu Z, Xu Y, Su H, Jing X, Wang D, Li S, Chen Y, Guan H, Meng L. Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydr Polym 2023; 311:120780. [PMID: 37028883 DOI: 10.1016/j.carbpol.2023.120780] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/12/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023]
Abstract
The choice of hemostatic technique is a curial concern for surgery and as first-aid treatment in combat. To treat uncontrolled bleeding in complex wound environments, chitosan-based hemostatic sponges have attracted significant attention in recent years because of the excellent biocompatibility, degradability, hemostasis and antibacterial properties of chitosan and their unique sponge-like morphology for high fluid absorption rate and priority aggregation of blood cells/platelets to achieve rapid hemostasis. In this review, we provide a historical perspective on the use of chitosan hemostatic sponges as the new generation of hemostatic materials for uncontrolled bleeding emergencies in complex wounds. We summarize the modification of chitosan, review the current status of preparation protocols of chitosan sponges based on various composite systems, and highlight the recent achievements on the detailed breakdown of the existing chitosan sponges to present the relationship between their composition, physical properties, and hemostatic capacity. Finally, the future opportunities and challenges of chitosan hemostatic sponges are also proposed.
Collapse
|
6
|
Xiao J, Li L, You H, Zhou S, Feng Y, You R. Silk nanofibrils/chitosan composite fibers with enhanced mechanical properties. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jiahui Xiao
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Liang Li
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Haining You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Shunshun Zhou
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Yanfei Feng
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| | - Renchuan You
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering Wuhan Textile University Wuhan China
| |
Collapse
|
7
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
8
|
Biocompatible fibers from fungal and shrimp chitosans for suture application. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|