1
|
Huang J, Liu Y, Xie H, Liu X, Feng Y, Wang B. Soil nitrogen deficiency aggravated the aging of biodegradable microplastics in paddy soil under the input of organic substances with contrasting C/N ratios. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137176. [PMID: 39813929 DOI: 10.1016/j.jhazmat.2025.137176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
The application of organic substances to the agricultural field has effectively enhanced soil nutrient levels and crop yields. Biodegradable microplastics (bio-MPs), a pervasive emerging contaminant, may potentially impact the soil ecosystem through their aging process. Here, a 150-day dark incubation experiment was conducted to elucidate the disparities in the aging process of polylactic acid bio-MPs (PLA-MPs) in soils with contrasting C/N ratios of organic substances, as the mechanisms underlying this process remain unclear. The study found that PLA-MPs resulted in an increase in soil pH, nutrient levels, and organic carbon content in soil-straw system. Additionally, PLA-MPs significantly influenced bacterial community composition and microbial metabolic activity in soil-straw system. Notably, more pronounced aging features of PLA-MPs was observed in soil-straw system (lower soil nitrogen environment) compared to soil-fertilizer system (higher soil nitrogen environment). Under lower soil nitrogen conditions, microorganisms may accelerate the aging process of PLA-MPs due to their preference for readily available energy sources; conversely, under higher soil nitrogen conditions, the aging of PLA-MPs may be decelerated as microorganisms preferentially utilize substances with easily accessible energy sources. Our findings provide valuable insights into the interaction between PLA-MPs and soil amended with the organic substances of contrasting C/N ratios.
Collapse
Affiliation(s)
- Junxia Huang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yidan Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huifang Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaobo Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yanfang Feng
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Bingyu Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
2
|
Oh J, Shin N, Kim S, Lee Y, Shin Y, Choi S, Joo JC, Jeon JM, Yoon JJ, Bhatia SK, Yang YH. Discovery of a Novel Bacillus sp. JO01 for the Degradation of Poly(butylene adipate- co-terephthalate)( PBAT) and Its Inhibition by PBAT Monomers. J Microbiol Biotechnol 2024; 35:e2408051. [PMID: 39894468 PMCID: PMC11813363 DOI: 10.4014/jmb.2408.08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 02/04/2025]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is a type of biodegradable plastic composed of both aliphatic and aromatic hydrocarbon polymers, which grants it the advantages of processability and flexibility along with increased interest. Studies have suggested that PBAT biodegradation mechanisms involve enzymatic breakdown by lipases. Our initial efforts in this study were therefore focused on identifying a novel PBAT-degrading bacterial strain with high degradation activity. Nine bacterial strains from various sources were screened and assessed for their ability to degrade PBAT. Bacillus sp. JO01 strain, exhibiting high similarity (99%) with Bacillus toyonensis BCT-7112, demonstrated superior PBAT degradation activity under various temperature conditions from 25 to 42°C. Time-dependent PBAT degradation by Bacillus sp. JO01 indicated a maximum yield at 30°C, reaching 66% of film degradation measured. Besides PBAT, the strain showed degradability on PCL, PHB, and PBS. Physical characterization of the degraded PBAT films via scanning electron microscopy revealed that surface alterations such as cracks were reduced, as was the molecular weight. Bacillus sp. JO01 did not consume PBAT monomers, such as adipic acid (AA), 1,4-butanediol, and terephthalic acid (TPA). However, AA and TPA showed inhibitory effects on the degradation of PBAT films by Bacillus sp. JO01, resulting in 30% inhibition of degradation at 16 mM of AA and at 32 mM of TPA. This study highlights Bacillus sp. JO01 as a superior strain for PBAT degradation and suggests that PBAT monomers have an inhibitory effect on the degrading strains, which is an important consideration for the bulk degradation of bioplastics.
Collapse
Affiliation(s)
- Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Chan Joo
- Department of Chemical Engineering, Kyung Hee University, Yongin-si 17104, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Balla ED, Klonos PA, Kyritsis A, Bertoldo M, Guigo N, Bikiaris DN. Novel Biobased Copolymers Based on Poly(butylene succinate) and Cutin: In Situ Synthesis and Structure Properties Investigations. Polymers (Basel) 2024; 16:2270. [PMID: 39204490 PMCID: PMC11360701 DOI: 10.3390/polym16162270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The present work describes the synthesis of poly(butylene succinate) (PBSu)-cutin copolymers by the two-stage melt polycondensation method, esterification and polycondensation. Cutin was added in four different concentrations, 2.5, 5, 10, and 20 wt%, in respect to succinic acid. The obtained copolymers were studied using a variety of techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), polarized light microscopy (PLM), as well as diffuse reflectance spectroscopy (DRS). A series of results, in agreement between different techniques, revealed the formation of PBSu-cutin interactions, confirming indirectly the successful in situ synthetic route of copolymers. DSC and XRD combined with PLM results provided indications that the crystallization temperature increases with the addition of small amounts of cutin and gradually decreases with increasing concentration. The crystallization process was easier and faster at 2.5%, 5%, and 10% concentrations, whereas at 20%, it was comparable to neat PBSu. The presence of cutin, in general, leads to the facilitated crystallizability of PBSu (direct effect), whereas a moderate drop in the glass transition temperature is recorded, the latter being an indirect effect of cutin via crystallization. The thermal stability improved in the copolymers compared to neat PBSu. Water contact angle measurements confirmed that the addition of cutin decreased the hydrophilicity. The local and segmental relaxation mapping is demonstrated for PBSu/cutin here for the first time. Enzymatic hydrolysis and soil degradation tests showed that, overall, cutin accelerated the decomposition of the polymers. The copolymers may be proven useful in several applications.
Collapse
Affiliation(s)
- Evangelia D. Balla
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis A. Klonos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Monica Bertoldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Nathanael Guigo
- Institute of Chemistry, Université Côte d’Azur, UMR 7272, 06108 Nice, France;
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Peñas M, Beloqui A, Martínez de Ilarduya A, Suttiruengwong S, Hernández R, Müller AJ. Enzymatic Degradation Behavior of Self-Degradable Lipase-Embedded Aliphatic and Aromatic Polyesters and Their Blends. Biomacromolecules 2024; 25:4030-4045. [PMID: 38856657 PMCID: PMC11238343 DOI: 10.1021/acs.biomac.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Over the past decade, the preparation of novel materials by enzyme-embedding into biopolyesters has been proposed as a straightforward method to produce self-degrading polymers. This paper reports the preparation and enzymatic degradation of extruded self-degradable films of three different biopolyesters: poly(lactic acid) (PLA), poly(butylene adipate-co-terephthalate) (PBAT), and poly(butylene succinate) (PBS), as well as three binary/ternary blends. Candida antarctica lipase B (CalB) has been employed for the enzyme-embedding procedure, and to the best of our knowledge, the use of this approach in biopolyester blends has not been reported before. The three homopolymers exhibited differentiated degradation and suggested a preferential attack of CalB on PBS films over PBAT and PLA. Moreover, the self-degradable films obtained from the blends showed slow degradation, probably due to the higher content in PLA and PBAT. These observations pave the way for exploring enzymes capable of degrading all blend components or an enzymatic mixture for blend degradation.
Collapse
Affiliation(s)
- Mario
Iván Peñas
- Institute
of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
- Polymat
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián 20018, Spain
| | - Ana Beloqui
- Polymat
and Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Antxon Martínez de Ilarduya
- Department
of Chemical Engineering, Polytechnic University
of Catalonia ETSEIB-UPC, Diagonal 647, Barcelona 08028, Spain
| | - Supakij Suttiruengwong
- Sustainable
Materials Laboratory, Department of Materials Science and Engineering,
Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Rebeca Hernández
- Institute
of Polymer Science and Technology ICTP-CSIC, Juan de la Cierva 3, Madrid 28006, Spain
| | - Alejandro J. Müller
- Polymat
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San
Sebastián 20018, Spain
- IKERBASQUE,
Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| |
Collapse
|
5
|
Santos A, Oliveira M, Lopes I, Almeida M, Venâncio C. Polyhydroxybutyrate (PHB) nanoparticles modulate metals toxicity in Hydra viridissima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172868. [PMID: 38714257 DOI: 10.1016/j.scitotenv.2024.172868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/09/2024]
Abstract
The use of bioplastics (e.g., polyhydroxybutyrate) emerged as a solution to help reduce plastic pollution caused by conventional plastics. Nevertheless, bioplastics share many characteristics with their conventional counterparts, such as degradation to nano-sized particles and the ability to sorb environmental pollutants, like metals. This study aimed to assess the potential impacts of the interaction of metals (cadmium - Cd, copper - Cu, and zinc - Zn) with polyhydroxybutyrate nanoplastics (PHB-NPLs; ~200 nm) on the freshwater cnidarian Hydra viridissima in terms of mortality rates, morphological alterations, and feeding behavior. The metal concentrations selected for the combined exposures corresponded to concentrations causing 20 %, 50 %, and 80 % of mortality (LC20, LC50, and LC80, respectively) and the PHB-NPLs concentrations ranged from 0.01 to 1000 μg/L. H. viridissima sensitivity to the metals, based on the LC50's, can be ordered as: Zn < Cd < Cu. Combined exposure to metals and PHB-NPLs yielded distinct outcomes concerning mortality, morphological changes, and feeding behavior, uncovering metal- and dose-specific responses. The interaction between Cd-LCx and PHB-NPLs progressed from no effect at LC20,96h to an ameliorative effect at Cd-LC50,96h. Cu-LCx revealed potential mitigation effects (LC20,96h and LC50,96h) but at Cu-LC80,96h the response shifts to a potentiating effect. For Zn-LCx, response patterns across the combinations with PHB-NPLs were like those induced by the metal alone. PHB-NPLs emerged as a key factor capable of modulating the toxicity of metals. This study highlights the context-dependent interactions between metals and PHB-NPLs in freshwater environments while supporting the need for further investigation of the underlying mechanisms and ecological consequences in forthcoming research.
Collapse
Affiliation(s)
- Ana Santos
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mónica Almeida
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Venâncio
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Wang L, Tu Z, Liang J, Wei Z. Poly(butylene oxalate-co-terephthalate): A PBAT-like but rapid hydrolytic degradation plastic. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134349. [PMID: 38653140 DOI: 10.1016/j.jhazmat.2024.134349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Concerns over worldwide plastic pollution have led to the development of biodegradable polyester materials with excellent physical and chemical properties through the copolymerization of poly(butylene oxalate) (PBOx). As a result, poly(butylene oxalate-co-terephthalate)s (PBOTs) with varying compositions, were prepared by incorporating aromatic units. Studies have indicated that PBOT-47 (with a 47% molar terephthalate), exhibits exceptional mechanical properties. With an elongation at break of 1160% and a tensile strength that remains above 30 MPa, similar to or even better than those of the commercial biodegradable plastic poly(butylene adipate-co-terephthalate) PBAT-47 (47% molar terephthalate). Moreover, the permeability coefficients of PBAT-47 for H2O, CO2 and O2 were 5.8, 50.6 and 5.6 times higher than that of PBOT-47, revealing the superior barrier properties of PBOT. Through experimental research and theoretical simulation, the mechanism of the copolymer hydrolysis was elucidated. The readily hydrolytic nature of the oxalate unit endows it with the capacity for rapid degradation, possessing the potential to be a short-term degradable material with physical properties similar to PBAT.
Collapse
Affiliation(s)
- Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaming Liang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Qiu R, Zhang X, Song C, Xu K, Nong H, Li Y, Xing X, Mequanint K, Liu Q, Yuan Q, Sun X, Xing M, Wang L. E-cardiac patch to sense and repair infarcted myocardium. Nat Commun 2024; 15:4133. [PMID: 38755124 PMCID: PMC11099052 DOI: 10.1038/s41467-024-48468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/02/2024] [Indexed: 05/18/2024] Open
Abstract
Conductive cardiac patches can rebuild the electroactive microenvironment for the infarcted myocardium but their repair effects benefit by carried seed cells or drugs. The key to success is the effective integration of electrical stimulation with the microenvironment created by conductive cardiac patches. Besides, due to the concerns in a high re-admission ratio of heart patients, a remote medicine device will underpin the successful repair. Herein, we report a miniature self-powered biomimetic trinity triboelectric nanogenerator with a unique double-spacer structure that unifies energy harvesting, therapeutics, and diagnosis in one cardiac patch. Trinity triboelectric nanogenerator conductive cardiac patches improve the electroactivity of the infarcted heart and can also wirelessly monitor electrocardiosignal to a mobile device for diagnosis. RNA sequencing analysis from rat hearts reveals that this trinity cardiac patches mainly regulates cardiac muscle contraction-, energy metabolism-, and vascular regulation-related mRNA expressions in vivo. The research is spawning a device that truly integrates an electrical stimulation of a functional heart patch and self-powered e-care remote diagnostic sensor.
Collapse
Affiliation(s)
- Renjie Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xingying Zhang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Chen Song
- The Fifth Affiliated Hospital of Southern Medical University, Southern Medical University, Guangdong, Guangzhou, China
| | - Kaige Xu
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Huijia Nong
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianglong Xing
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Kibret Mequanint
- Department of Chemical and Biochemical Engineering, and School of Biomedical Engineering, The University of Western Ontario, London, ON, Canada
| | - Qian Liu
- Department of Applied Computer Science, University of Winnipeg, Winnipeg, MB, Canada
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada.
| | - Leyu Wang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China.
- Department of Anatomy, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
Chatrath S, Alotaibi M, Barry CF. Performance of Recycled Polylactic Acid/Amorphous Polyhydroxyalkanoate Blends. Polymers (Basel) 2024; 16:1230. [PMID: 38732699 PMCID: PMC11085229 DOI: 10.3390/polym16091230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Blends of polylactic acid (PLA) with amorphous polyhydroxyalkanoate (aPHA) are less brittle than neat PLA, thus enabling their use as biodegradable packaging. This work investigated the impact of recycling on the properties of neat PLA and PLA/aPHA blends with 90 and 75 wt. % PLA. After the materials were subjected to five heat histories in a single-screw extruder, the mechanical, rheological, and thermal properties were measured. All recycled compounds with 100% PLA and 75% PLA had similar decomposition behavior, whereas the decomposition temperatures for the blends with 90% PLA decreased with each additional heat cycle. The glass transition and melting temperatures were not impacted by reprocessing, but the crystallinity increased with more heat cycles. The complex viscosity of the reprocessed PLA and PLA/aPHA blends was much lower than for the neat PLA and increasing the number of heat cycles produced smaller reductions in the complex viscosity of 100% PLA and the blend with 90% PLA; no change in complex viscosity was observed for blends with 75% PLA exposed to 2 to 5 heat cycles. The tensile properties were not affected by reprocessing, whereas the impact strength for the 75% PLA blend decreased with reprocessing. These properties suggest that users will be able to incorporate scrap into the neat resin for thermoformed packaging.
Collapse
Affiliation(s)
| | | | - Carol Forance Barry
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01879, USA
| |
Collapse
|
9
|
Ma K, Fu Y, Liu Y. The effects of microplastics on crop variation depend on polymer types and their interactions with soil nutrient availability and weed competition. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:223-231. [PMID: 38198234 DOI: 10.1111/plb.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 11/13/2023] [Indexed: 01/12/2024]
Abstract
Microplastics pollution of agricultural soil is a global environmental concern because of its potential risk to food security and human health. Although many studies have tested the direct effects of microplastics on growth of Eruca sativa Mill., little is known about whether these effects are regulated by fertilization and weed competition in field management practices. Here, we performed a greenhouse experiment growing E. sativa as target species in a three-factorial design with two levels of fertilization (low versus. high), two levels of weed competition treatments (weed competition versus no weed competition) and five levels of microplastic treatments (no microplastics, Polybutylene adipate-co-terephthalate [PBAT], Polybutylene succinate [PBS], Polycaprolactone [PCL] or Polypropylene [PP]). Compared to the soil without microplastics, PBS and PCL reduced aboveground biomass and leaf number of the E. sativa. PBS also resulted in increased root allocation and thicker roots in E. sativa. In addition, fertilization significantly mitigated the negative effects of PBS and PCL on aboveground biomass of E. sativa, but weed competition significantly promoted these effects. Although fertilization alleviated the negative effect of PBS on aboveground biomass, such alleviation became weaker under weed competition than when E. sativa grew alone. The results indicate that the effects of specific polymer types on E. sativa growth could be regulated by fertilization, weed management, and even their interactions. Therefore, reasonable on-farm management practices may help in mitigating the negative effects of microplastics pollution on E. sativa growth in agricultural fields.
Collapse
Affiliation(s)
- K Ma
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Y Fu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Y Liu
- Key Laboratory of Wetland Ecology and Environment, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Ecology, Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
10
|
Shin N, Kim SH, Oh J, Kim S, Lee Y, Shin Y, Choi S, Bhatia SK, Kim YG, Yang YH. Reproducible Polybutylene Succinate (PBS)-Degrading Artificial Consortia by Introducing the Least Type of PBS-Degrading Strains. Polymers (Basel) 2024; 16:651. [PMID: 38475335 DOI: 10.3390/polym16050651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Polybutylene succinate (PBS) stands out as a promising biodegradable polymer, drawing attention for its potential as an eco-friendly alternative to traditional plastics due to its biodegradability and reduced environmental impact. In this study, we aimed to enhance PBS degradation by examining artificial consortia composed of bacterial strains. Specifically, Terribacillus sp. JY49, Bacillus sp. JY35, and Bacillus sp. NR4 were assessed for their capabilities and synergistic effects in PBS degradation. When only two types of strains, Bacillus sp. JY35 and Bacillus sp. NR4, were co-cultured as a consortium, a notable increase in degradation activity toward PBS was observed compared to their activities alone. The consortium of Bacillus sp. JY35 and Bacillus sp. NR4 demonstrated a remarkable degradation yield of 76.5% in PBS after 10 days. The degradation of PBS by the consortium was validated and our findings underscore the potential for enhancing PBS degradation and the possibility of fast degradation by forming artificial consortia, leveraging the synergy between strains with limited PBS degradation activity. Furthermore, this study demonstrated that utilizing only two types of strains in the consortium facilitates easy control and provides reproducible results. This approach mitigates the risk of losing activity and reproducibility issues often associated with natural consortia.
Collapse
Affiliation(s)
- Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jinok Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suwon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yeda Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yuni Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suhye Choi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Application, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Ma Z, Yin T, Jiang Z, Weng Y, Zhang C. Bio-based epoxidized soybean oil branched cardanol ethers as compatibilizers of polybutylene succinate (PBS)/polyglycolic acid (PGA) blends. Int J Biol Macromol 2024; 259:129319. [PMID: 38211920 DOI: 10.1016/j.ijbiomac.2024.129319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024]
Abstract
Blending poly(butylene succinate) (PBS) with another biodegradable polymer, polyglycolic acid (PGA), has been demonstrated to improve the barrier performance of PBS. However, blending these two polymers poses a challenge because of their incompatibility and large difference of their melting temperatures. In this study, we synthesized epoxidized soybean oil branched cardanol ether (ESOn-ECD), a bio-based and environmentally friendly compatibilizer, and used it to enhance the compatibility of PBS/PGA blends. It was demonstrated that the terminal carboxyl/hydroxyl groups of PBS and PGA can react with ESOn-ECD in situ, leading to branching and chain extension of PBS and PGA. The addition of ESO3-ECD to the blend considerably diminished the dispersed phase of PGA. Specifically, in comparison to the PBS/PGA blend without a compatibilizer, the diameter of the PGA phase decreased from 2.04 μm to 0.45 μm after the addition of 0.7 phr of ESO3-ECD, and the boundary between the two phases became difficult to distinguish. Additionally, the mechanical properties of the blends were improved after addition of ESO3-ECD. This research expands the potential applications of these materials and promotes the use of bio-based components in blend formulations.
Collapse
Affiliation(s)
- Zhirui Ma
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Tian Yin
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Zhikui Jiang
- China Shenhua Coal to Liquid and Chemical Co, Ltd, Beijing, China
| | - Yunxuan Weng
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Caili Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
12
|
Correa-Pacheco ZN, Bautista-Baños S, Benítez-Jiménez JJ, Ortega-Gudiño P, Cisneros-López EO, Hernández-López M. Biodegradability Assessment of Prickly Pear Waste-Polymer Fibers under Soil Composting. Polymers (Basel) 2023; 15:4164. [PMID: 37896407 PMCID: PMC10610709 DOI: 10.3390/polym15204164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/06/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Nowadays, solving the problems associated with environmental pollution is of special interest. Therefore, in this work, the morphology and thermal and mechanical properties of extruded fibers based on polylactic acid (PLA) and poly(butylene adipate-co-terephthalate) (PBAT) added to prickly pear flour (PPF) under composting for 3 and 6 months were evaluated. The highest weight loss percentage (92 ± 7%) was obtained after 6-month degradation of the PLA/PBAT/PPF/CO/AA blend, in which PPF, canola oil (CO), and adipic acid (AA) were added. Optical and scanning electron microscopy (SEM) revealed structural changes in the fibers as composting time increased. The main changes in the absorption bands observed by Fourier transform infrared spectroscopy (FTIR) were related to the decrease in -C=O (1740 cm-1) and -C-O (1100 cm-1) groups and at 1269 cm-1, associated with hemicellulose in the blends with PPF. Differential scanning calorimetry (DSC) showed an increase in the cold crystallization and melting point with degradation time, being more evident in the fibers with PPF, as well as a decrease in the mechanical properties, especially Young's modulus. The obtained results suggest that PPF residues could promote the biodegradability of PLA/PBAT-based fiber composites.
Collapse
Affiliation(s)
- Zormy Nacary Correa-Pacheco
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6, Calle CEPROBI, No. 8, San Isidro, Yautepec 62731, Morelos, Mexico; (S.B.-B.); (M.H.-L.)
| | - Silvia Bautista-Baños
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6, Calle CEPROBI, No. 8, San Isidro, Yautepec 62731, Morelos, Mexico; (S.B.-B.); (M.H.-L.)
| | - José Jesús Benítez-Jiménez
- Instituto de Ciencia de Materiales de Sevilla, CSIC-Universidad de Sevilla, Avda. Américo Vespucio 49, Isla de la Cartuja, 41092 Sevilla, Spain;
| | - Pedro Ortega-Gudiño
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán #1451, Guadalajara 44430, Jalisco, Mexico;
| | - Erick Omar Cisneros-López
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán #1451, Guadalajara 44430, Jalisco, Mexico;
| | - Mónica Hernández-López
- Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Carretera Yautepec-Jojutla, Km. 6, Calle CEPROBI, No. 8, San Isidro, Yautepec 62731, Morelos, Mexico; (S.B.-B.); (M.H.-L.)
| |
Collapse
|
13
|
Ketabchi MR, Masoudi Soltani S, Chan A. Synthesis of a new biocomposite for fertiliser coating: assessment of biodegradability and thermal stability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93722-93730. [PMID: 37515618 PMCID: PMC10468924 DOI: 10.1007/s11356-023-28892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Abstract
The bio- and thermal degradation as well as the water absorption properties of a novel biocomposite comprising cellulose nanoparticles, natural rubber and polylactic acid have been investigated. The biodegradation process was studied through an assembled condition based on the soil collected from the central Malaysian palm oil forests located in the University of Nottingham Malaysia. The effects of the presence of the cellulose nanoparticles and natural rubber on the biodegradation of polylactic acid were investigated. The biodegradation process was studied via thermal gravimetric analysis and scanning electron microscopy. It was understood that the reinforcement of polylactic acid with cellulose nanoparticles and natural rubber increases the thermal stability by ~ 20 °C. Limited amorphous regions on the surface of the cellulose nanoparticles accelerated the biodegradation and water absorption processes. Based on the obtained results, it is predicted that complete biodegradation of the synthesised biocomposites can take place in 3062 h, highlighting promising agricultural applications for this biocomposite.
Collapse
Affiliation(s)
- Mohammad Reza Ketabchi
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor Malaysia
| | | | - Andy Chan
- School of Engineering, Robert Gordon University, Aberdeen, AB10 7GJ UK
| |
Collapse
|
14
|
Schneider Y, Guski V, Sahin AO, Schmauder S, Kadkhodapour J, Hufert J, Grebhardt A, Bonten C. Investigation of Auxetic Structural Deformation Behavior of PBAT Polymers Using Process and Finite Element Simulation. Polymers (Basel) 2023; 15:3142. [PMID: 37514532 PMCID: PMC10384392 DOI: 10.3390/polym15143142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The current work investigates the auxetic tensile deformation behavior of the inversehoneycomb structure with 5 × 5 cells made of biodegradable poly(butylene adipate-coterephthalate) (PBAT). Fused deposition modeling, an additive manufacturing method, was used to produce such specimens. Residual stress (RS) and warpage, more or less, always exist in such specimens due to their layer-by-layer fabrication, i.e., repeated heating and cooling. The RS influences the auxetic deformation behavior, but its measurement is challenging due to its very fine structure. Instead, the finite-element (FE)-based process simulation realized using an ABAQUS plug-in numerically predicts the RS and warpage. The predicted warpage shows a negligibly slight deviation compared to the design topology. This process simulation also provides the temperature evolution of a small-volume material, revealing the effects of local cyclic heating and cooling. The achieved RS serves as the initial condition for the FE model used to investigate the auxetic tensile behavior. With the outcomes from FE calculation without consideration of the RS, the effect of the RS on the deformation behavior is discussed for the global force-displacement curve, the structural Poisson's ratio evolution, the deformed structural status, the stress distribution, and the evolution, where the first three and the warpage are also compared with the experimental results. Furthermore, the FE simulation can easily provide the global stress-strain flow curve with the total stress calculated from the elemental stresses.
Collapse
Affiliation(s)
- Yanling Schneider
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Vinzenz Guski
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Ahmet O Sahin
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Siegfried Schmauder
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran P.O. Box 16785-163, Iran
| | - Jonas Hufert
- Institut für Kunststofftechnik, Universität Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Axel Grebhardt
- Institut für Kunststofftechnik, Universität Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Christian Bonten
- Institut für Kunststofftechnik, Universität Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| |
Collapse
|
15
|
Kim J, Park S, Bang J, Jin H, Kwak HW. Biodegradation in Composting Conditions of PBEAS Monofilaments for the Sustainable End-Use of Fishing Nets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300020. [PMID: 37287594 PMCID: PMC10242531 DOI: 10.1002/gch2.202300020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/04/2023] [Indexed: 06/09/2023]
Abstract
The development and utilization of biodegradable plastics is an effective way to overcome environmental pollution caused by the disposal of non-degradable plastics. Recently, polybutylene succinate co-butylene adipate co-ethylene succinate co-ethylene adipate, (PBEAS) a biodegradable polymer with excellent strength and elongation, was developed to replace conventional nylon-based non-degradable fishing nets. The biodegradable fishing gear developed in this way can greatly contribute to inhibiting ghost fishing that may occur at the fishing site. In addition, by collecting the products after use and disposing of them in composting conditions, the environmental problem such as the leakage of microplastics strongly can be prevented. In this study, the aerobic biodegradation of PBEAS fishing nets under composting conditions is evaluated and the resulting changes in physicochemical properties are analyzed. The PBEAS fishing gear exhibits a mineralization rate of 82% in a compost environment for 45 days. As a result of physicochemical analysis, PBEAS fibers show a representative decrease in molecular weight and mechanical properties under composting conditions. PBEAS fibers can be used as eco-friendly biodegradable fishing gear that can replace existing non-degradable nylon fibers, and in particular, fishing gear collected after use can be returned to nature through biodegradation under composting conditions.
Collapse
Affiliation(s)
- Jungkyu Kim
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Subong Park
- Fisheries Engineering DivisionNational Institute of Fisheries ScienceBusan46083South Korea
| | - Junsik Bang
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Hyoung‐Joon Jin
- Department of Polymer Science and EngineeringInha University100 Inha‐ro, Nam‐guIncheon22212South Korea
| | - Hyo Won Kwak
- Department of AgricultureForestry and BioresourcesCollege of Agriculture & Life SciencesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Research Institute of Agriculture and Life SciencesSeoul National University1 Gwanak‐roGwanak‐guSeoul08826South Korea
| |
Collapse
|
16
|
Xie C, Xiong Q, Wei Y, Li X, Hu J, He M, Wei S, Yu J, Cheng S, Ahmad M, Liu Y, Luo S, Zeng X, Yu J, Luo H. Fabrication of biodegradable hollow microsphere composites made of polybutylene adipate co-terephthalate/polyvinylpyrrolidone for drug delivery and sustained release. Mater Today Bio 2023; 20:100628. [PMID: 37122839 PMCID: PMC10130625 DOI: 10.1016/j.mtbio.2023.100628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.
Collapse
Affiliation(s)
- Chuan Xie
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qinqin Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yuanzhi Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Li
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jiajun Hu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Min He
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Shinan Wei
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mashaal Ahmad
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yufei Liu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
- Corresponding author. Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- Corresponding author.
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Yu
- Department of Polymer Material and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- National Engineering Research Center for Compounding and Modification of Polymeric Materials, Guiyang, 550014, China
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- Corresponding author. State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
| |
Collapse
|
17
|
Schneider Y, Guski V, Schmauder S, Kadkhodapour J, Hufert J, Grebhardt A, Bonten C. Deformation Behavior Investigation of Auxetic Structure Made of Poly(butylene adipate-co-terephthalate) Biopolymers Using Finite Element Method. Polymers (Basel) 2023; 15:polym15071792. [PMID: 37050406 PMCID: PMC10098569 DOI: 10.3390/polym15071792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/08/2023] Open
Abstract
Auxetic structures made of biodegradable polymers are favorable for industrial and daily life applications. In this work, poly(butylene adipate-co-terephthalate) (PBAT) is chosen for the study of the deformation behavior of an inverse-honeycomb auxetic structure manufactured using the fused filament fabrication. The study focus is on auxetic behavior. One characteristic of polymer deformation prediction using finite element (FE) simulation is that no sounded FE model exists, due to the significantly different behavior of polymers under loading. The deformation behavior prediction of auxetic structures made of polymers poses more challenges, due to the coupled influences of material and topology on the overall behavior. Our work presents a general process to simulate auxetic structural deformation behavior for various polymers, such as PBAT, PLA (polylactic acid), and their blends. The current report emphasizes the first one. Limited by the state of the art, there is no unified regulation for calculating the Poisson’s ratio ν for auxetic structures. Here, three calculation ways of ν are presented based on measured data, one of which is found to be suitable to present the auxetic structural behavior. Still, the influence of the auxetic structural topology on the calculated Poisson’s ratio value is also discussed, and a suggestion is presented. The numerically predicted force–displacement curve, Poisson’s ratio evolution, and the deformed auxetic structural status match the testing results very well. Furthermore, FE simulation results can easily illustrate the stress distribution both statistically and local-topology particularized, which is very helpful in analyzing in-depth the auxetic behavior.
Collapse
Affiliation(s)
- Yanling Schneider
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Vinzenz Guski
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Siegfried Schmauder
- Institute for Materials Testing, Materials Science and Strength of Materials (IMWF), University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Javad Kadkhodapour
- Department of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran P. O. Box 16785-163, Iran
| | - Jonas Hufert
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Axel Grebhardt
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| | - Christian Bonten
- Institut für Kunststofftechnik, University of Stuttgart, Pfaffenwaldring 32, D-70569 Stuttgart, Germany
| |
Collapse
|
18
|
Yan X, Chen L, Tian H, Jia S, Wang X, Pan H, Han L, Bian J, Yang H, Wu G, Zhao Y, Zhang H. Enhancement of the compatibility, mechanical properties, and heat resistance of poly(butylene succinate-co-terephthalate)/poly(butylene succinate) blends by the addition of chain extender and nucleating agent. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
19
|
Bianchi M, Dorigato A, Morreale M, Pegoretti A. Evaluation of the Physical and Shape Memory Properties of Fully Biodegradable Poly(lactic acid) (PLA)/Poly(butylene adipate terephthalate) (PBAT) Blends. Polymers (Basel) 2023; 15:polym15040881. [PMID: 36850164 PMCID: PMC9963890 DOI: 10.3390/polym15040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Biodegradable polymers have recently become popular; in particular, blends of poly(lactic acid) (PLA) and poly(butylene adipate terephthalate) (PBAT) have recently attracted significant attention due to their potential application in the packaging field. However, there is little information about the thermomechanical properties of these blends and especially the effect induced by the addition of PBAT on the shape memory properties of PLA. This work, therefore, aims at producing and investigating the microstructural, thermomechanical and shape memory properties of PLA/PBAT blends prepared by melt compounding. More specifically, PLA and PBAT were melt-blended in a wide range of relative concentrations (from 85/15 to 25/75 wt%). A microstructural investigation was carried out, evidencing the immiscibility and the low interfacial adhesion between the PLA and PBAT phases. The immiscibility was also confirmed by differential scanning calorimetry (DSC). A thermogravimetric analysis (TGA) revealed that the addition of PBAT slightly improved the thermal stability of PLA. The stiffness and strength of the blends decreased with the PBAT amount, while the elongation at break remained comparable to that of neat PLA up to a PBAT content of 45 wt%, while a significant increment in ductility was observed only for higher PBAT concentrations. The shape memory performance of PLA was impaired by the addition of PBAT, probably due to the low interfacial adhesion observed in the blends. These results constitute a basis for future research on these innovative biodegradable polymer blends, and their physical properties might be further enhanced by adding suitable compatibilizers.
Collapse
Affiliation(s)
- Marica Bianchi
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| | - Andrea Dorigato
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
- Correspondence: (A.D.); (M.M.)
| | - Marco Morreale
- Faculty of Engineering and Architecture, Kore University of Enna, Cittadella Universitaria, 94100 Enna, Italy
- Correspondence: (A.D.); (M.M.)
| | - Alessandro Pegoretti
- Department of Industrial Engineering and INSTM Research Unit, University of Trento, Via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
20
|
Cappello M, Rossi D, Filippi S, Cinelli P, Seggiani M. Wood Residue-Derived Biochar as a Low-Cost, Lubricating Filler in Poly(butylene succinate- co-adipate) Biocomposites. MATERIALS (BASEL, SWITZERLAND) 2023; 16:570. [PMID: 36676307 PMCID: PMC9863910 DOI: 10.3390/ma16020570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
This study focused on the development of a novel biocomposite material formed by a thermoplastic biodegradable polyester, poly(butylene succinate-co-adipate) (PBSA), and a carbonaceous filler as biochar (BC) derived by the pyrolysis of woody biomass waste. Composites with various BC contents (5, 10, 15, and 20 wt.%) were obtained by melt extrusion and investigated in terms of their processability, thermal, rheological, and mechanical properties. In all the composites, BC lowered melt viscosity, behaving as a lubricant, and enhancing composite extrudability and injection moulding at high temperatures up to 20 wt.% of biochar. While the use of biochar did not significantly change composite thermal stability, it increased its stiffness (Young modulus). Differential scanning calorimeter (DSC) revealed the presence of a second crystal phase induced by the filler addition. Furthermore, results suggest that biochar may form a particle network that hinders polymer chain disentanglement, reducing polymer flexibility. A biochar content of 10 wt.% was selected as the best trade-off concentration to improve the composite processability and cost competitiveness without compromising excessively the tensile properties. The findings support the use of biochar as a sustainable renewable filler and pigment for PBSA. Biochar is a suitable candidate to replace more traditional carbon black pigments for the production of biodegradable and inexpensive innovative PBSA composites with potential fertilizing properties to be used in agricultural applications.
Collapse
|
21
|
Mansoor Z, Tchuenbou-Magaia F, Kowalczuk M, Adamus G, Manning G, Parati M, Radecka I, Khan H. Polymers Use as Mulch Films in Agriculture-A Review of History, Problems and Current Trends. Polymers (Basel) 2022; 14:polym14235062. [PMID: 36501456 PMCID: PMC9740682 DOI: 10.3390/polym14235062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The application of mulch films for preserving soil moisture and preventing weed growth has been a part of agricultural practice for decades. Different materials have been used as mulch films, but polyethylene plastic has been considered most effective due to its excellent mechanical strength, low cost and ability to act as a barrier for sunlight and water. However, its use carries a risk of plastic pollution and health hazards, hence new laws have been passed to replace it completely with other materials over the next few years. Research to find out about new biodegradable polymers for this purpose has gained impetus in the past few years, driven by regulations and the United Nations Organization's Sustainable Development Goals. The primary requisite for these polymers is biodegradability under natural climatic conditions without the production of any toxic residual compounds. Therefore, biodegradable polymers developed from fossil fuels, microorganisms, animals and plants are viable options for using as mulching material. However, the solution is not as simple since each polymer has different mechanical properties and a compromise has to be made in terms of strength, cost and biodegradability of the polymer for its use as mulch film. This review discusses the history of mulching materials, the gradual evolution in the choice of materials, the process of biodegradation of mulch films, the regulations passed regarding material to be used, types of polymers that can be explored as potential mulch films and the future prospects in the area.
Collapse
Affiliation(s)
- Zinnia Mansoor
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Department of Biotechnology, Virtual University of Pakistan, Lahore 54000, Pakistan
| | - Fideline Tchuenbou-Magaia
- Division of Chemical Engineering, School of Engineering, Computing and Mathematical Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Georgina Manning
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Mattia Parati
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| | - Habib Khan
- School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK
- Correspondence: (I.R.); (H.K.)
| |
Collapse
|