1
|
Tang L, He X, Huang R. Advancements and Perspectives in Biodegradable Polyester Elastomers: Toward Sustainable and High-Performance Materials. Int J Mol Sci 2025; 26:727. [PMID: 39859438 PMCID: PMC11765570 DOI: 10.3390/ijms26020727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
While the traditional rubber industry faces the severe pressure of environmental pollution and carbon emissions, bio-based and biodegradable elastomers have become a hot topic in the field and drawn intensive research interest. Inspired by polyester resin, incorporating polyol or polycarboxylic acid as a branching unit into aliphatic polyester and/or introducing a monomer with a C=C bond to provide open-bond cross-linking in the fashion of common vulcanization to form three-dimensional network structures are two mainstream strategies for designing biodegradable polyester elastomers (BPEs). Both methods encounter more or fewer problems, such as poor mechanical and thermal properties due to the easy hydrolysis of the ester bond and space hinderance, or the potential harm of the remaining degraded small molecules with olefin bonds. This article provides an overview of recent endeavors aimed at addressing these challenges and prospects the probable future advancements in the field.
Collapse
Affiliation(s)
- Lisheng Tang
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
| | - Xiaoyan He
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
| | - Ran Huang
- Academy for Engineering and Technology, Yiwu Research Institute, Zhuhai Fudan Innovation Institute, Fudan University, Shanghai 200433, China; (L.T.); (X.H.)
- Center for Innovation and Entrepreneurship, Taizhou Institute of Zhejiang University, Taizhou 318000, China
| |
Collapse
|
2
|
Chen X, Ran X, Wei X, Zhu L, Chen S, Liao Z, Xu K, Xia W. Bioactive glass 1393 promotes angiogenesis and accelerates wound healing through ROS/P53/MMP9 signaling pathway. Regen Ther 2024; 26:132-144. [PMID: 38872979 PMCID: PMC11169082 DOI: 10.1016/j.reth.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024] Open
Abstract
Compared to bioactive glass 45S5, bioactive glass 1393 has shown greater potential in activating tissue cells and promoting angiogenesis for bone repair. Nevertheless, the effect of bioactive glass 1393 in the context of wound healing remains extensively unexplored, and its mechanism in wound healing remains unclear. Considering that angiogenesis is a critical stage in wound healing, we hypothesize that bioactive glass 1393 may facilitate wound healing through the stimulation of angiogenesis. To validate this hypothesis and further explore the mechanisms underlying its pro-angiogenic effects, we investigated the impact of bioactive glass 1393 on wound healing angiogenesis through both in vivo and in vitro studies. The research demonstrated that bioactive glass 1393 accelerated wound healing by promoting the formation of granulation, deposition of collagen, and angiogenesis. The results of Western blot analysis and immunofluorescence staining revealed that bioactive glass 1393 up-regulated the expression of angiogenesis-related factors. Additionally, bioactive glass 1393 inhibited the expression of ROS and P53 to promote angiogenesis. Furthermore, bioactive glass 1393 stimulated angiogenesis through the P53 signaling pathway, as evidenced by P53 activation assays. Collectively, these findings indicate that bioactive glass 1393 accelerates wound healing by promoting angiogenesis via the ROS/P53/MMP9 signaling pathway.
Collapse
Affiliation(s)
- Xuenan Chen
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Xinyu Ran
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuebo Wei
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifei Zhu
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Shaodong Chen
- Department of Orthopaedics, Lishui People's Hospital, Zhejiang, China
| | - Zhiyong Liao
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Ke Xu
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
- College of Life and Environmental Sciences, Wenzhou University, Zhejiang, China
| | - Weidong Xia
- National Key Clinical Specialty(Wound Healing), Burn and Wound Healing Center, The First Affliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
3
|
Mahmoud MH, El-Gogary RI, Soliman ME, Kamel AO. Novel green-based polyglycerol polymeric nanoparticles loaded with ferulic acid: A promising approach for hepatoprotection. Int J Biol Macromol 2024; 264:130698. [PMID: 38458296 DOI: 10.1016/j.ijbiomac.2024.130698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
In the pursuit of eco-friendly and sustainable materials, polyglycerol diacid polymers hold immense promise for drug delivery compared to those derived from fossil fuels. Harnessing this potential, we aimed to prepare nanoparticles (NPs) derived from sustainable polymers, loaded with ferulic acid (FA), a natural polyphenolic compound known for its shielding effect against liver-damaging agents, including carbon tetrachloride (CCl4). Glycerol was esterified with renewable monomers, such as succinic acid, adipic acid, and/or FA, resulting in the creation of a novel class of polyglycerol diacid polymers. Characterization via Fourier-transform infrared spectroscopy and nuclear magnetic resonance confirmed the successful synthesis of these polymers with <7 % residual monomers. FA-loaded NPs were fabricated using the newly synthesized polymers. To further augment their potential, the NPs were coated with chitosan. The chitosan-coated NPs boasted an optimal PS of 290 ± 5.03 nm, showing superior physical stability, and a commendable EE% of 58.79 ± 0.43%w/v. The cytotoxicity was examined on fibroblast cells using the SRB assay. In-vivo experiments employing a CCl4-induced liver injury model yielded compelling evidence of the heightened hepatoprotective effects conferred by chitosan-coated particles. This demonstrates the benefits of incorporating sustainable polymers into innovative composites for efficient drug delivery, indicating their potential for creating versatile platforms for various therapeutic applications.
Collapse
Affiliation(s)
- Mariam H Mahmoud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Mahmoud E Soliman
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt; Egypt Japan University of Science and Technology, Egypt
| | - Amany O Kamel
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Chatzimentor I, Tsamesidis I, Ioannou ME, Pouroutzidou GK, Beketova A, Giourieva V, Papi R, Kontonasaki E. Study of Biological Behavior and Antimicrobial Properties of Cerium Oxide Nanoparticles. Pharmaceutics 2023; 15:2509. [PMID: 37896269 PMCID: PMC10610395 DOI: 10.3390/pharmaceutics15102509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
(1) Background: An element that has gained much attention in industrial and biomedical fields is Cerium (Ce). CeO2 nanoparticles have been proven to be promising regarding their different biomedical applications for the control of infection and inflammation. The aim of the present study was to investigate the biological properties and antimicrobial behavior of cerium oxide (CeO2) nanoparticles (NPs). (2) Methods: The investigation of the NPs' biocompatibility with human periodontal ligament cells (hPDLCs) was evaluated via the MTT assay. Measurement of alkaline phosphatase (ALP) levels and alizarine red staining (ARS) were used as markers in the investigation of CeO2 NPs' capacity to induce the osteogenic differentiation of hPDLCs. Induced inflammatory stress conditions were applied to hPDLCs with H2O2 to estimate the influence of CeO2 NPs on the viability of cells under these conditions, as well as to reveal any ROS scavenging properties. Total antioxidant capacity (TAC) of cell lysates with NPs was also investigated. Finally, the macro broth dilution method was the method of choice for checking the antibacterial capacity of CeO2 against the anaerobic pathogens Porphyromonas gingivalis and Prevotella intermedia. (3) Results: Cell viability assay indicated that hPDLCs increase their proliferation rate in a time-dependent manner in the presence of CeO2 NPs. ALP and ARS measurements showed that CeO2 NPs can promote the osteogenic differentiation of hPDLCs. In addition, the MTT assay and ROS determination demonstrated some interesting results concerning the viability of cells under oxidative stress conditions and, respectively, the capability of NPs to decrease free radical levels over the course of time. Antimicrobial toxicity was observed mainly against P. gingivalis. (4) Conclusions: CeO2 NPs could provide an excellent choice for use in clinical practices as they could prohibit bacterial proliferation and control inflammatory conditions.
Collapse
Affiliation(s)
- Iason Chatzimentor
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Maria-Eleni Ioannou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
- Laboratory of Advanced Materials and Devices (AMDeLab), Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| | - Veronica Giourieva
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Rigini Papi
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (V.G.); (R.P.)
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.C.); (I.T.); (M.-E.I.); (G.K.P.); (A.B.)
| |
Collapse
|
5
|
Pouroutzidou GK, Papadopoulou L, Lazaridou M, Tsachouridis K, Papoulia C, Patsiaoura D, Tsamesidis I, Chrissafis K, Vourlias G, Paraskevopoulos KM, Anastasiou AD, Bikiaris DN, Kontonasaki E. Composite PLGA–Nanobioceramic Coating on Moxifloxacin-Loaded Akermanite 3D Porous Scaffolds for Bone Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030819. [PMID: 36986685 PMCID: PMC10053907 DOI: 10.3390/pharmaceutics15030819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Silica-based ceramics doped with calcium and magnesium have been proposed as suitable materials for scaffold fabrication. Akermanite (Ca2MgSi2O7) has attracted interest for bone regeneration due to its controllable biodegradation rate, improved mechanical properties, and high apatite-forming ability. Despite the profound advantages, ceramic scaffolds provide weak fracture resistance. The use of synthetic biopolymers such as poly(lactic-co-glycolic acid) (PLGA) as coating materials improves the mechanical performance of ceramic scaffolds and tailors their degradation rate. Moxifloxacin (MOX) is an antibiotic with antimicrobial activity against numerous aerobic and anaerobic bacteria. In this study, silica-based nanoparticles (NPs) enriched with calcium and magnesium, as well as copper and strontium ions that induce angiogenesis and osteogenesis, respectively, were incorporated into the PLGA coating. The aim was to produce composite akermanite/PLGA/NPs/MOX-loaded scaffolds through the foam replica technique combined with the sol–gel method to improve the overall effectiveness towards bone regeneration. The structural and physicochemical characterizations were evaluated. Their mechanical properties, apatite forming ability, degradation, pharmacokinetics, and hemocompatibility were also investigated. The addition of NPs improved the compressive strength, hemocompatibility, and in vitro degradation of the composite scaffolds, resulting in them keeping a 3D porous structure and a more prolonged release profile of MOX that makes them promising for bone regeneration applications.
Collapse
Affiliation(s)
- Georgia K. Pouroutzidou
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| | - Lambrini Papadopoulou
- School of Geology, Faculty of Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Lazaridou
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Tsachouridis
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Chrysanthi Papoulia
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitra Patsiaoura
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Tsamesidis
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos Chrissafis
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - George Vourlias
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Konstantinos M. Paraskevopoulos
- Advanced Materials and Devices Laboratory, Faculty of Sciences, School of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios D. Anastasiou
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M1 3AL, UK
| | - Dimitrios N. Bikiaris
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, Faculty of Health Sciences, School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (G.K.P.); (E.K.)
| |
Collapse
|
6
|
Tsamesidis I, Theocharidou A, Beketova A, Bousnaki M, Chatzimentor I, Pouroutzidou GK, Gkiliopoulos D, Kontonasaki E. Artemisinin Loaded Cerium-Doped Nanopowders Improved In Vitro the Biomineralization in Human Periodontal Ligament Cells. Pharmaceutics 2023; 15:pharmaceutics15020655. [PMID: 36839977 PMCID: PMC9962187 DOI: 10.3390/pharmaceutics15020655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A promising strategy to enhance bone regeneration is the use of bioactive materials doped with metallic ions with therapeutic effects and their combination with active substances and/or drugs. The aim of the present study was to investigate the osteogenic capacity of human periodontal ligament cells (hPDLCs) in culture with artemisinin (ART)-loaded Ce-doped calcium silicate nanopowders (NPs); Methods: Mesoporous silica, calcium-doped and calcium/cerium-doped silicate NPs were synthesized via a surfactant-assisted cooperative self-assembly process. Human periodontal ligament cells (hPDLCs) were isolated and tested for their osteogenic differentiation in the presence of ART-loaded and unloaded NPs through alkaline phosphatase (ALP) activity and Alizarine red S staining, while their antioxidant capacity was also evaluated; Results: ART promoted further the osteogenic differentiation of hPDLCs in the presence of Ce-doped NPs. Higher amounts of Ce in the ART-loaded NPs inversely affected the mineral deposition process by the hPDLCs. ART and Ce in the NPs have a synergistic role controlling the redox status and reducing ROS production from the hPDLCs; Conclusions: By monitoring the Ce amount and ART concentration, mesoporous NPs with optimum properties can be developed towards bone tissue regeneration demonstrating also potential application in periodontal tissue regeneration strategies.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: or
| | - Anna Theocharidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anastasia Beketova
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iason Chatzimentor
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia K. Pouroutzidou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Laboratory of Advanced Materials and Devices (AMDeLab), School of Physics, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios Gkiliopoulos
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|