1
|
Gao X, Gao W, Lu D, Xu R. Di-Cyclohexene Oxide Bridged by DDSQ: Preparation, Characterization, and Application as Fillers for Cyanate Ester Resin. Molecules 2025; 30:1113. [PMID: 40076336 PMCID: PMC11902247 DOI: 10.3390/molecules30051113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
In order to improve the dielectric properties of existing thermosetting resins, taking advantage of reactive fillers is a simple and feasible option. In this paper, we synthesized a new double epoxycyclohexane double-decker silsesquioxane (DEDDSQ), in which the structure of aliphatic epoxy resin introduced into DDSQ successfully, and the resulting structure of DEDDESQ is confirmed by Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) spectroscopy, and mass spectrometry (MS). Cyanate ester resin was selected as the case study for the application of DEDDSQ as reactive fillers. A CE/E51/DEDDSQ nanocomposite was fabricated by incorporating a small proportion of E51 resin and DEDDSQ into cyanate ester resin to enhance its comprehensive properties. X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) analyses demonstrated that DEDDSQ dispersed uniformly within the resin matrix. Dynamic mechanical analysis (DMA) demonstrated that the CE/E51/8.0DEDDSQ nanocomposites exhibit excellent thermal properties. The glass transition temperature (Tg) of the nanocomposite was measured to be 264 °C, indicating its excellent thermal stability. Dielectric property measurements showed that the addition of DEDDSQ reduced the dielectric constant of the cyanate ester resin, with the CE/E51/8.0DEPOSS nanocomposite exhibiting a dielectric constant of 2.47 at 1 MHz.
Collapse
Affiliation(s)
| | | | | | - Riwei Xu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; (X.G.); (W.G.); (D.L.)
| |
Collapse
|
2
|
Kao YC, Lin JY, Chen WC, Gamal Mohamed M, Huang CF, Chen JH, Kuo SW. High-Thermal Stable Epoxy Resin through Blending Nanoarchitectonics with Double-Decker-Shaped Polyhedral Silsesquioxane-Functionalized Benzoxazine Derivatives. Polymers (Basel) 2023; 16:112. [PMID: 38201777 PMCID: PMC10780953 DOI: 10.3390/polym16010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
A series of di-functional benzoxazine (BZ) monomers was synthesized, specifically the double-decker silsesquioxane (DDSQ) cage structure (DDSQ-BZ). Comparative analyses were conducted between DDSQ-BZ monomers and the most commonly utilized bisphenol A-functionalized bifunctional benzoxazine (BPA-BZ) monomer. DDSQ-BZ compounds possess better thermal properties such as high char yield and high thermal decomposition temperature (Td10) after thermal ring-opening polymerization (ROP) because the inorganic DDSQ cage nanostructure features a nano-reinforcement effect. In addition, blending inorganic DDSQ-BZ compounds with epoxy resin was explored to form organic/inorganic hybrids with enhanced thermal and mechanical properties following thermal ROP. The improvement in mechanical properties is primarily attributed to the network structure formed by the cross-linking between DDSQ-BZ and the epoxy resin during thermal ROP, as well as hydrogen bonding interactions formed between the hydroxyl groups generated during thermal ROP and the Si-O-Si bonds in the DDSQ structure.
Collapse
Affiliation(s)
- Yang-Chin Kao
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (Y.-C.K.); (W.-C.C.); (M.G.M.)
| | - Jing-Yu Lin
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Wei-Cheng Chen
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (Y.-C.K.); (W.-C.C.); (M.G.M.)
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (Y.-C.K.); (W.-C.C.); (M.G.M.)
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
| | - Chih-Feng Huang
- Department of Chemical Engineering, i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung 40227, Taiwan;
| | - Jung-Hui Chen
- Department of Chemistry, National Kaohsiung Normal University, Kaohsiung 80201, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (Y.-C.K.); (W.-C.C.); (M.G.M.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Fan Z, Li B, Ren D, Xu M. Recent Progress of Low Dielectric and High-Performance Polybenzoxazine-Based Composites. Polymers (Basel) 2023; 15:3933. [PMID: 37835982 PMCID: PMC10575129 DOI: 10.3390/polym15193933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
With the rapid advancement of intelligent electronics, big data platforms, and other cutting-edge technologies, traditional low dielectric polymer matrix composites are no longer sufficient to satisfy the application requirements of high-end electronic information materials, particularly in the realm of high integration and high-frequency, high-speed electronic communication device manufacturing. Consequently, resin-based composites with exceptional low dielectric properties have garnered unprecedented attention. In recent years, benzoxazine-based composites have piqued the interest of scholars in the fields of high-temperature-resistant, low dielectric electronic materials due to their remarkable attributes such as high strength, high modulus, high heat resistance, low curing shrinkage, low thermal expansion coefficient, and excellent flame retardancy. This article focuses on the design and development of modification of polybenzoxazine based on low dielectric polybenzoxazine modification methods. Studies on manufacturing polybenzoxazine co-polymers and benzoxazine-based nanocomposites have also been reviewed.
Collapse
Affiliation(s)
| | | | | | - Mingzhen Xu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (Z.F.); (B.L.); (D.R.)
| |
Collapse
|
4
|
Sun X, Fu Q, Dai P, Zhang C, Xu R. Catalyzing Benzoxazine Polymerization with Titanium-Containing POSS to Reduce the Curing Temperature and Improve Thermal Stability. Molecules 2023; 28:5450. [PMID: 37513322 PMCID: PMC10384060 DOI: 10.3390/molecules28145450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Trisilanolphenyl-polyhedral oligomeric silsesquioxane titanium (Ti-Ph-POSS) was synthesized through the corner-capping reaction, and Ti-Ph-POSS was dispersed in benzoxazine (BZ) to prepare Ti-Ph-POSS/PBZ composite materials. Ti-Ph-POSS could catalyze the ring-opening polymerization (ROP) of BZ and reduce the curing temperature of benzoxazine. In addition, Ti immobilized on the Ti-Ph-POSS cage could form covalent bonds with the N or O atoms on polybenzoxazine, improving the thermal stability of PBZ. The catalytic activity of the Ti-Ph-POSS/BZ mixtures was assessed and identified through 1H nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared (FTIR) analyses, while thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA) were used to determine the thermal properties of the composite. It was found that PBZ exhibited a higher glass transition temperature (Tg) and better thermal stability when Ti-Ph-POSS was added. The curing behavior of the Ti-Ph-POSS/BZ mixtures showed that the initial (Ti) and peak (Tp) curing temperatures sharply decreased as the content of Ti-Ph-POSS and the heating rate increased. The curing kinetics of these Ti-Ph-POSS/BZ systems were analyzed using the Kissinger method, and the morphology of Ti-Ph-POSS/PBZ was determined via scanning electron microscopy (SEM). It was found that the Ti-Ph-POSS particles were well distributed in the composites. When the content exceeded 2 wt%, several Ti-Ph-POSS particles could not react with benzoxazine and were only dispersed within the PBZ matrix, resulting in aggregation of the Ti-Ph-POSS molecules.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
| | - Qixuan Fu
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
| | - Pei Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Caili Zhang
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Riwei Xu
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Ministry of Education, Beijing 100029, China
| |
Collapse
|
5
|
Design Hybrid Porous Organic/Inorganic Polymers Containing Polyhedral Oligomeric Silsesquioxane/Pyrene/Anthracene Moieties as a High-Performance Electrode for Supercapacitor. Int J Mol Sci 2023; 24:ijms24032501. [PMID: 36768824 PMCID: PMC9916954 DOI: 10.3390/ijms24032501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
We synthesized two hybrid organic-inorganic porous polymers (HPP) through the Heck reaction of 9,10 dibromoanthracene (A-Br2) or 1,3,6,8-tetrabromopyrene (P-Br4)/A-Br2 as co-monomers with octavinylsilsesquioxane (OVS), in order to afford OVS-A HPP and OVS-P-A HPP, respectively. The chemical structures of these two hybrid porous polymers were validated through FTIR and solid-state 13C and 29Si NMR spectroscopy. The thermal stability and porosity of these materials were measured by TGA and N2 adsorption/desorption analyses, demonstrating that OVS-A HPP has higher thermal stability (Td10: 579 °C) and surface area (433 m2 g-1) than OVS-P-A HPP (Td10: 377 °C and 98 m2 g-1) due to its higher cross-linking density. Furthermore, the electrochemical analysis showed that OVS-P-A HPP has a higher specific capacitance (177 F g -1 at 0.5 A F g-1) when compared to OVS-A HPP (120 F g -1 at 0.5 A F g-1). The electron-rich phenyl rings and Faradaic reaction between the π-conjugated network and anthracene moiety may be attributed to their excellent electrochemical performance of OVS-P-A HPP.
Collapse
|
6
|
Chiang CH, Mohamed MG, Chen WC, Madhu M, Tseng WL, Kuo SW. Construction of Fluorescent Conjugated Polytriazole Containing Double-Decker Silsesquioxane: Click Polymerization and Thermal Stability. Polymers (Basel) 2023; 15:polym15020331. [PMID: 36679213 PMCID: PMC9863912 DOI: 10.3390/polym15020331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
This study synthesized two azide-functionalized monomers through p-dichloro xylene and double-decker silsesquioxane (DDSQ) units with NaN3 to form DB-N3 and DDSQ-N3 monomers, respectively. In addition, five different propargyl-functionalized monomers were also prepared from hydroquinone, bisphenol A, bis(4-hydroxyphenyl)methanone, 2,4-dihydroxybenzaldehyde (then reacted with hydrazine hydrate solution) and 1,2-bis(4-hydroxyphenyl)-1,2-diphenylethene with propargyl bromide to form P-B, P-BPA, P-CO, P-NP, and P-TPE monomers, respectively. As a result, various DDSQ-based main chain copolymers could be synthesized using Cu(I)-catalyzed click polymerization through DDSQ-N3 with different propargyl-functionalized monomers, of which the chemical structure and molecular weight could be confirmed by using Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and gel permeation chromatography (GPC) analyses. Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), scanning electron microscope (SEM), transmission electron microscopy (TEM), and photoluminescence (PL) spectroscopy analyses also could characterize the thermal stability, morphology, and optical behaviors of these DDSQ-based copolymers. All results indicate that the incorporation of an inorganic DDSQ cage could improve the thermal stability such as thermal decomposition temperature and char yield, because of the DDSQ dispersion homogeneously in the copolymer matrix, and this would then affect the optical properties of NP and TPE units in this work.
Collapse
Affiliation(s)
- Chia-Husan Chiang
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71515, Egypt
- Correspondence: (M.G.M.); (S.-W.K.)
| | - Wei-Cheng Chen
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, College of Semiconductor and Advanced Technology Research, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (M.G.M.); (S.-W.K.)
| |
Collapse
|