1
|
Kimata R, Yoshihara N, Tomita Y, Terukina T, Kondo H. Polymer Characteristics for Drug Layering on Particles Using a Novel Melt Granulation Technology, MALCORE ®. AAPS PharmSciTech 2024; 25:81. [PMID: 38600252 DOI: 10.1208/s12249-024-02798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024] Open
Abstract
MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.
Collapse
Affiliation(s)
- Ryota Kimata
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Pharmaceutical Development Department, Sawai Pharmaceutical Co., Ltd, 2-30, Miyahara 5-Chome, Yodogawa-Ku, Osaka, 532-0003, Japan
| | - Naoki Yoshihara
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
- Pharmaceutical Development Department, Sawai Pharmaceutical Co., Ltd, 2-30, Miyahara 5-Chome, Yodogawa-Ku, Osaka, 532-0003, Japan
| | - Yuya Tomita
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Takayuki Terukina
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-Ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
2
|
Pabba DP, Satthiyaraju M, Ramasdoss A, Sakthivel P, Chidhambaram N, Dhanabalan S, Abarzúa CV, Morel MJ, Udayabhaskar R, Mangalaraja RV, Aepuru R, Kamaraj SK, Murugesan PK, Thirumurugan A. MXene-Based Nanocomposites for Piezoelectric and Triboelectric Energy Harvesting Applications. MICROMACHINES 2023; 14:1273. [PMID: 37374858 DOI: 10.3390/mi14061273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Due to its superior advantages in terms of electronegativity, metallic conductivity, mechanical flexibility, customizable surface chemistry, etc., 2D MXenes for nanogenerators have demonstrated significant progress. In order to push scientific design strategies for the practical application of nanogenerators from the viewpoints of the basic aspect and recent advancements, this systematic review covers the most recent developments of MXenes for nanogenerators in its first section. In the second section, the importance of renewable energy and an introduction to nanogenerators, major classifications, and their working principles are discussed. At the end of this section, various materials used for energy harvesting and frequent combos of MXene with other active materials are described in detail together with the essential framework of nanogenerators. In the third, fourth, and fifth sections, the materials used for nanogenerators, MXene synthesis along with its properties, and MXene nanocomposites with polymeric materials are discussed in detail with the recent progress and challenges for their use in nanogenerator applications. In the sixth section, a thorough discussion of the design strategies and internal improvement mechanisms of MXenes and the composite materials for nanogenerators with 3D printing technologies are presented. Finally, we summarize the key points discussed throughout this review and discuss some thoughts on potential approaches for nanocomposite materials based on MXenes that could be used in nanogenerators for better performance.
Collapse
Affiliation(s)
- Durga Prasad Pabba
- Departamento de Mecánica, Facultad de Ingeniería, Universidad Tecnologica Metropolitana, Santiago 8330378, Chile
| | - Mani Satthiyaraju
- Department of Mechanical Engineering, Kathir College of Engineering, Coimbatore 641062, India
| | - Ananthakumar Ramasdoss
- School for Advanced Research in Polymers (SARP), Central Institute of Petrochemicals Engineering & Technology (CIPET), T.V.K. Industrial Estate, Guindy, Chennai 600032, India
| | - Pandurengan Sakthivel
- Centre for Materials Science, Department of Physics, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Natarajan Chidhambaram
- Department of Physics, Rajah Serfoji Government College (Autonomous), Thanjavur 613005, India
| | - Shanmugasundar Dhanabalan
- Functional Materials and Microsystems Research Group, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Mauricio J Morel
- Departamento de Química y Biología, Facultad de Ciencias Naturales, Universidad de Atacama, Copiapó 1531772, Chile
| | - Rednam Udayabhaskar
- Departamento de Mecánica, Facultad de Ingeniería, Universidad Tecnologica Metropolitana, Santiago 8330378, Chile
| | | | - Radhamanohar Aepuru
- Departamento de Mecánica, Facultad de Ingeniería, Universidad Tecnologica Metropolitana, Santiago 8330378, Chile
| | - Sathish-Kumar Kamaraj
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Altamira (CICATA Altamira), Altamira 89600, Mexico
| | | | | |
Collapse
|