1
|
Gao T, Zhang Y, Morlet-Savary F, Graff B, Zhang J, Xiao P, Dumur F, Lalevée J. Novel High-Performance Glyoxylate Derivative-Based Photoinitiators for Free Radical Photopolymerization and 3D Printing with Visible LED. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400234. [PMID: 38426650 DOI: 10.1002/smll.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Indexed: 03/02/2024]
Abstract
Investigations concerning the glyoxylate moiety as a photocleavable functional group for visible light photoinitiators, particularly in the initiation of free radical photopolymerization remain limited. This study introduces nine innovative carbazole-based ethyl glyoxylate derivatives (CEGs), which are synthesized and found to exhibit excellent photoinitiation abilities as monocomponent photoinitiating systems. Notably, these structures demonstrate robust absorption in the near-UV/visible range, surpassing the commercial photoinitiators. Moreover, the newly developed glyoxylate derivatives show higher acrylate function conversions compared to a benchmark photoinitiator (MBF) in free radical photopolymerization. Elucidation of the photoinitiation mechanism of CEGs is achieved through a comprehensive analysis involving the decarboxylation reaction and electron spin resonance spin trapping. Furthermore, their practical utility is confirmed during direct laser writing and 3D printing processes, enabling the successful fabrication of 3D printed objects. This study introduces pioneering concepts and effective strategies in the molecular design of novel photoinitiators, showcasing their potential for highly advantageous applications in 3D printing.
Collapse
Affiliation(s)
- Tong Gao
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, France
| | - Yijun Zhang
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, France
| | - Bernadette Graff
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, France
| | - Jing Zhang
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Pu Xiao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, Marseille, F-13397, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR7361, Mulhouse, F-68100, France
- Université de Strasbourg, France
| |
Collapse
|
2
|
Zhu K, Li Y, Huan D, Liu H, Li Z, Jin Y, Zhu C. Effect of Novel Compound Redox Initiators on Polymerization Mechanism and Mechanical Properties of Acrylic Resin. Macromol Rapid Commun 2024; 45:e2300579. [PMID: 37984501 DOI: 10.1002/marc.202300579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Indexed: 11/22/2023]
Abstract
Aiming at the problems of long reaction time and the risk of explosion polymerization of acrylate resin, a small amount of ferrocene (Fc) is added to the existing dibenzoyl peroxide (BPO)/N,N-dimethylaniline (DMA) initiators, and the compound redox initiators (BPO/DMA/ (Fc)) are proposed for acrylate resin polymerization at room temperature. The effect of the content of Fc in the resin on the reaction efficiency and the molding quality of products is researched, and the initiation mechanism of the compound redox initiators is analyzed. It is found that with the addition of Fc, the reaction time of the resin can be shortened by 68% at maximum, the heat release temperature of the resin can be reduced by 40% at maximum, the molecular weight of the reaction products can be increased by 74% at maximum, the tensile and bending properties of the resin castings are increased by 23% and 35% at maximum, respectively, and the bending strength and bending modulus are increased by 57% and 27% at maximum, respectively. The compound redox initiators proposed in this paper can improve the molding efficiency and quality of the product, lay a foundation for the application of acrylic resin in the field of pultrusion molding, perfusion molding, and other in situ molding of thermoplastic composites.
Collapse
Affiliation(s)
- Kang Zhu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Yong Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
- Jiangsu Key Laboratory of Hi-Tech Research of Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Dajun Huan
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Hao Liu
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Ziyi Li
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Yue Jin
- Department of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| | - Chunling Zhu
- Jiangsu Key Laboratory of Hi-Tech Research of Wind Turbine Design, Nanjing University of Aeronautics and Astronautics, Nanjing, 210001, P. R. China
| |
Collapse
|
3
|
Abuwatfa WH, Pitt WG, Husseini GA. Scaffold-based 3D cell culture models in cancer research. J Biomed Sci 2024; 31:7. [PMID: 38221607 PMCID: PMC10789053 DOI: 10.1186/s12929-024-00994-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
Three-dimensional (3D) cell cultures have emerged as valuable tools in cancer research, offering significant advantages over traditional two-dimensional (2D) cell culture systems. In 3D cell cultures, cancer cells are grown in an environment that more closely mimics the 3D architecture and complexity of in vivo tumors. This approach has revolutionized cancer research by providing a more accurate representation of the tumor microenvironment (TME) and enabling the study of tumor behavior and response to therapies in a more physiologically relevant context. One of the key benefits of 3D cell culture in cancer research is the ability to recapitulate the complex interactions between cancer cells and their surrounding stroma. Tumors consist not only of cancer cells but also various other cell types, including stromal cells, immune cells, and blood vessels. These models bridge traditional 2D cell cultures and animal models, offering a cost-effective, scalable, and ethical alternative for preclinical research. As the field advances, 3D cell cultures are poised to play a pivotal role in understanding cancer biology and accelerating the development of effective anticancer therapies. This review article highlights the key advantages of 3D cell cultures, progress in the most common scaffold-based culturing techniques, pertinent literature on their applications in cancer research, and the ongoing challenges.
Collapse
Affiliation(s)
- Waad H Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, P.O. Box. 26666, Sharjah, United Arab Emirates.
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Jing S, Lian L, Hou Y, Li Z, Zheng Z, Li G, Tang G, Xie G, Xie M. Advances in volumetric bioprinting. Biofabrication 2023; 16:012004. [PMID: 37922535 DOI: 10.1088/1758-5090/ad0978] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
The three-dimensional (3D) bioprinting technologies are suitable for biomedical applications owing to their ability to manufacture complex and high-precision tissue constructs. However, the slow printing speed of current layer-by-layer (bio)printing modality is the major limitation in biofabrication field. To overcome this issue, volumetric bioprinting (VBP) is developed. VBP changes the layer-wise operation of conventional devices, permitting the creation of geometrically complex, centimeter-scale constructs in tens of seconds. VBP is the next step onward from sequential biofabrication methods, opening new avenues for fast additive manufacturing in the fields of tissue engineering, regenerative medicine, personalized drug testing, and soft robotics, etc. Therefore, this review introduces the printing principles and hardware designs of VBP-based techniques; then focuses on the recent advances in VBP-based (bio)inks and their biomedical applications. Lastly, the current limitations of VBP are discussed together with future direction of research.
Collapse
Affiliation(s)
- Sibo Jing
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - Yingying Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zeqing Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Zihao Zheng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Guoxi Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Maobin Xie
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| |
Collapse
|
5
|
Dumur F. Recent Advances in Monocomponent Visible Light Photoinitiating Systems Based on Sulfonium Salts. Polymers (Basel) 2023; 15:4202. [PMID: 37959882 PMCID: PMC10649563 DOI: 10.3390/polym15214202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/15/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
During the last decades, multicomponent photoinitiating systems have been the focus of intense research efforts, especially for the design of visible light photoinitiating systems. Although highly reactive three-component and even four-component photoinitiating systems have been designed, the complexity to elaborate such mixtures has incited researchers to design monocomponent Type II photoinitiators. Using this approach, the photosensitizer and the radical/cation generator can be combined within a unique molecule, greatly simplifying the elaboration of the photocurable resins. In this field, sulfonium salts are remarkable photoinitiators but these structures lack absorption in the visible range. Over the years, various structural modifications have been carried out in order to redshift their absorptions in the visible region. In this work, an overview of the different sulfonium salts activable under visible light and reported to date is proposed.
Collapse
Affiliation(s)
- Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR, UMR 7273, F-13397 Marseille, France
| |
Collapse
|
6
|
Gajewski P, Żyła W, Kazimierczak K, Marcinkowska A. Hydrogel Polymer Electrolytes: Synthesis, Physicochemical Characterization and Application in Electrochemical Capacitors. Gels 2023; 9:527. [PMID: 37504406 PMCID: PMC10379150 DOI: 10.3390/gels9070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Electrochemical capacitors operating in an aqueous electrolyte solution have become ever-more popular in recent years, mainly because they are cheap and ecofriendly. Additionally, aqueous electrolytes have a higher ionic conductivity than organic electrolytes and ionic liquids. These materials can exist in the form of a liquid or a solid (hydrogel). The latter form is a very promising alternative to liquid electrolytes because it is solid, which prevents electrolyte leakage. In our work, hydrogel polymer electrolytes (HPEs) were obtained via photopolymerization of a mixture of acrylic oligomer Exothane 108 with methacrylic acid (MAA) in ethanol, which was later replaced by electrolytes (1 M Na2SO4). Through the conducted research, the effects of the monomers ratio and the organic solvent concentration (ethanol) on the mechanical properties (tensile test), electrolyte sorption, and ionic conductivity were examined. Finally, hydrogel polymer electrolytes with high ionic conductivity (σ = 26.5 mS∙cm-1) and sufficient mechanical stability (σmax = 0.25 MPa, εmax = 20%) were tested using an AC/AC electrochemical double layer capacitor (EDLC). The electrochemical properties of the devices were investigated via cyclic voltammetry, galvanostatic charge/discharge, and impedance spectroscopy. The obtained results show the application potential of the obtained HPE in EDLC.
Collapse
Affiliation(s)
- Piotr Gajewski
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Wiktoria Żyła
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Klaudia Kazimierczak
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Agnieszka Marcinkowska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
7
|
Substituent effect on the visible light initiating ability of chalcones. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
8
|
Recent Advances on Furan-Based Visible Light Photoinitiators of Polymerization. Catalysts 2023. [DOI: 10.3390/catal13030493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Abstract
Photopolymerization is an active research field enabling to polymerize in greener conditions than that performed with traditional thermal polymerization. At present, a great deal of effort is devoted to developing visible light photoinitiating systems. Indeed, the traditional UV photoinitiating systems are currently the focus of numerous safety concerns so alternatives to UV light are being actively researched. However, visible light photons are less energetic than UV photons so the reactivity of the photoinitiating systems should be improved to address this issue. In this field, furane constitutes an interesting candidate for the design of photocatalysts of polymerization due to its low cost and its easy chemical modification. In this review, an overview concerning the design of furane-based photoinitiators is provided. Comparisons with reference systems are also established to demonstrate evidence of the interest of these photoinitiators in innovative structures.
Collapse
|
9
|
Dumur F. The Future of Visible Light Photoinitiators of Polymerization for Photocrosslinking Applications. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|