1
|
Sobiech M, Khamanga SM, Synoradzki K, Bednarchuk TJ, Sikora K, Luliński P, Giebułtowicz J. Molecularly Imprinted Drug Carrier for Lamotrigine-Design, Synthesis, and Characterization of Physicochemical Parameters. Int J Mol Sci 2024; 25:4605. [PMID: 38731823 PMCID: PMC11083086 DOI: 10.3390/ijms25094605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 μg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | | | - Karol Synoradzki
- Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland;
| | - Tamara J. Bednarchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland;
| | - Katarzyna Sikora
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | - Piotr Luliński
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (M.S.); (K.S.)
| | - Joanna Giebułtowicz
- Department of Drug Chemistry, Pharmaceutical and Biomedical Analysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| |
Collapse
|
2
|
Lin H, Li B, Bai Y, Wang S, Zhou X, Yuan L, Zhang J, She Y, Zhou H, Abd El-Aty AM. Development of magnetic molecularly imprinted polymers for selective extraction of Benzoxazolinone-type alkaloids from acanthus plants. J Chromatogr A 2024; 1713:464542. [PMID: 38070357 DOI: 10.1016/j.chroma.2023.464542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 01/08/2024]
Abstract
Benzoxazolinone-type alkaloids found in Acanthus ebracteatus and Acanthus ilicifolius Linnaeus possess various beneficial properties, such as antileishmanial, antipyretic, analgesic, antibacterial, and antioxidant effects. In this study, we employed a surface imprinting technique on nanomaterials. We utilized functionalized Fe3O4@SiO2NH2 as a scaffold, with 2-benzoxazolinone and 2H-1,4-benzoxazin-3(4H)-one serving as dual templates, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinker, and 2,2-azodiisobutyric nitrile (AIBN) as the initiator. Prior to polymerization, we screened functional monomers using ultraviolet (UV) spectroscopy. The resulting magnetic surface molecular imprinting polymer (Fe3O4@SiO2@MIP) was thoroughly characterized using Fourier transform infrared spectrometry (FT-IR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). We also conducted assessments of its adsorption isotherms, dynamics, and selective binding capabilities. Our findings indicate that the MIPs exhibited exceptional selective recognition performance. Through meticulous screening and optimization of extraction and separation conditions, we established an LC‒MS/MS method based on magnetic solid-phase extraction technology. The method exhibited a recovery range of 78.80-106.99 % (RSD, 0.46-3.31 %) for 2-benzoxazolinone, with a limit of detection (LOD) and limit of quantification (LOQ) of 2.85 and 9.00 μg L-1, respectively. For 2H-1,4-benzoxazin-3(4H)-one, the method yielded a recovery range of 84.75-103.53 % (RSD, 0.07-5.96 %), with an LOD and LOQ of 3.60 and 12.60 μg L-1, respectively, in real samples. The resulting Fe3O4@SiO2@MIP demonstrated a high capacity for class-specific adsorption.
Collapse
Affiliation(s)
- Hongling Lin
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Bing Li
- Lanzhou Institute of Animal Science and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Yubin Bai
- Lanzhou Institute of Animal Science and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Shengyi Wang
- Lanzhou Institute of Animal Science and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Xuzheng Zhou
- Lanzhou Institute of Animal Science and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Ligang Yuan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China.
| | - Jiyu Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China; Lanzhou Institute of Animal Science and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China.
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hanlin Zhou
- Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| |
Collapse
|
3
|
Shen Y, Miao P, Liu S, Gao J, Han X, Zhao Y, Chen T. Preparation and Application Progress of Imprinted Polymers. Polymers (Basel) 2023; 15:polym15102344. [PMID: 37242918 DOI: 10.3390/polym15102344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/11/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Due to the specific recognition performance, imprinted polymers have been widely investigated and applied in the field of separation and detection. Based on the introduction of the imprinting principles, the classification of imprinted polymers (bulk imprinting, surface imprinting, and epitope imprinting) are summarized according to their structure first. Secondly, the preparation methods of imprinted polymers are summarized in detail, including traditional thermal polymerization, novel radiation polymerization, and green polymerization. Then, the practical applications of imprinted polymers for the selective recognition of different substrates, such as metal ions, organic molecules, and biological macromolecules, are systematically summarized. Finally, the existing problems in its preparation and application are summarized, and its prospects have been prospected.
Collapse
Affiliation(s)
- Yongsheng Shen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Pengpai Miao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Shucheng Liu
- Institute of Forensic Science, Hunan Provincial Public Security Bureau, Changsha 410001, China
| | - Jie Gao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xiaobing Han
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Yuan Zhao
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Tao Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Pharmacy, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| |
Collapse
|