1
|
Chudzińska-Skorupinska J, Wawrzyńczak A, Feliczak-Guzik A. Carbohydrate-based polymer nanocarriers for environmentally friendly applications. Adv Colloid Interface Sci 2025; 338:103415. [PMID: 39884112 DOI: 10.1016/j.cis.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Effective delivery of active substances and drugs is an important part of treatment. In order for a drug to work at the right place in the body, it must be transported there in the right way. For this reason, new carriers are being sought for active substances and drugs that can effectively deliver drugs to the target site without causing additional side effects. These include nanoparticles, microneedles, cubosomes and nanogels, among others. Recently, carriers based on biodegradable polymers such as hyaluronic acid or chitosan are becoming popular. In addition, modern carriers are designed to release the active ingredient in response to a specific agent. This paper reviews the literature from the past 5 years on novel delivery systems with medical, agricultural, food and cosmetic applications, with a special emphasis on the use of carbohydrate-based nanocarriers.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
2
|
Sajjadi S, Shayanfar A, Kiafar F, Siahi-Shadbad M. Tacrolimus: Physicochemical stability challenges, analytical methods, and new formulations. Int J Pharm X 2024; 8:100285. [PMID: 39328187 PMCID: PMC11426107 DOI: 10.1016/j.ijpx.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Tacrolimus, a potent immunosuppressant, is widely used in several formulations to treat organ rejection in transplant patients. However, its physicochemical stability poses significant challenges, including thermal instability, photostability issues, low solubility, and drug-excipient incompatibility. This review article focuses on the details of these challenges and discusses the analytical methods employed to study tacrolimus stability, such as thermal, spectroscopic, and chromatographic methods in different formulations. New formulations to enhance tacrolimus stability are explored, including lipid-based nanocarriers, polymers, and thin film freezing. Researchers and formulators can optimize tacrolimus formulations to improve efficacy and patient outcomes by understanding and addressing these stability challenges.
Collapse
Affiliation(s)
- Sara Sajjadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Kiafar
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadreza Siahi-Shadbad
- Pharmaceutical and Food Control Department, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Chicea D, Nicolae-Maranciuc A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5770. [PMID: 39685206 DOI: 10.3390/ma17235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications. This review examines chitosan's unique properties, with a focus on its antibacterial activity as influenced by factors like pH, concentration, molecular weight, and deacetylation degree. Additionally, chitosan's potential as a sustainable, non-toxic material for eco-friendly packaging and water treatment is explored, highlighting the growing interest in chitosan composites with other polymers and metallic nanoparticles for enhanced biomedical and environmental applications.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
4
|
Aina M, Baillon F, Sescousse R, Sanchez-Ballester NM, Begu S, Soulairol I, Sauceau M. Development of Personalised Immediate-Release Gel-Based Formulations Using Semi-Solid Extrusion. Gels 2024; 10:665. [PMID: 39451318 PMCID: PMC11507880 DOI: 10.3390/gels10100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Precision in dosing is crucial for optimizing therapeutic outcomes and preventing overdosing, especially in preterm infants. Traditional manual adjustments to adapt the dose often lead to inaccuracies, contamination risks, and reduced precision. To overcome these challenges, semi-solid extrusion 3D printing was used to create personalised gel-based caffeine dosage forms. The hydrogels, made from agar and hydroxypropyl methylcellulose, demonstrated excellent rheological properties, ensuring uniform extrusion and accurate shape retention during and after printing. This gel formulation allowed for precise adjustments of caffeine volume and content tailored to a neonate weighing 1.36 kg, achieving a recovery of 103.46%, well within acceptable limits. Additionally, three production batches confirmed the process's reproducibility with minimal variability. Forced degradation studies showed that both pure caffeine and caffeine in the gel matrix exhibited similar stability profiles, confirming the drug's chemical integrity. The printed gel dosage forms also displayed immediate-release characteristics, with over 80% of caffeine released within 45 min, highlighting their suitability for rapid therapeutic action. These findings emphasise the potential of SSE 3DP and gel-based formulations to produce personalised drug delivery systems with high precision, reproducibility, and reliability.
Collapse
Affiliation(s)
- Morenikeji Aina
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Fabien Baillon
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Romain Sescousse
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| | - Noelia M. Sanchez-Ballester
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30029 Nîmes, France
| | - Sylvie Begu
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Ian Soulairol
- ICGM, University of Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30029 Nîmes, France
| | - Martial Sauceau
- RAPSODEE, IMT Mines Albi, CNRS, University of Toulouse, 81013 Albi, France
| |
Collapse
|
5
|
Merijs-Meri R, Zicans J, Ivanova T, Mezule L, Ivanickins A, Bockovs I, Bitenieks J, Berzina R, Lebedeva A. Melt-Processed Polybutylene-Succinate Biocomposites with Chitosan: Development and Characterization of Rheological, Thermal, Mechanical and Antimicrobial Properties. Polymers (Basel) 2024; 16:2808. [PMID: 39408518 PMCID: PMC11478647 DOI: 10.3390/polym16192808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
The current research is devoted to the development and characterization of green antimicrobial polymer biocomposites for food packaging applications. The biocomposites were developed by melt compounding on the basis of two different succinate polymer matrices with varying chain stiffness-polybutylene succinate (PBS) or its copolymer with 20 mol.% of polybutylene adipate (PBSA). Fungi chitosan oligosaccharide (C98) and crustacean chitosan (C95) were used as antimicrobial additives. The rheological properties of the developed biocomposites were determined to clear out the most suitable temperature for melt processing. In addition, mechanical, thermal, barrier and antimicrobial properties of the developed biocomposites were determined. The results of the investigation revealed that PBSA composites with 7 wt% and 10 wt% of the C98 additive were more suitable for the development of green packaging films because of their higher ultimate elongation values, better damping properties as well as their superior anti-microbial behavior. However, due to the lower thermal stability of the C98 additive as well as PBSA, the melt processing temperatures of the composites desirably should not exceed 120 °C. Additionally, by considering decreased moisture vapor barrier properties, it is recommended to perform further modifications of the PBSA-C98 composites through an addition of a nanoclay additive due to its excellent barrier properties and thermal stability.
Collapse
Affiliation(s)
- Remo Merijs-Meri
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Janis Zicans
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Tatjana Ivanova
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Linda Mezule
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Aleksandrs Ivanickins
- Water Systems and Biotechnology Institute, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (L.M.); (A.I.)
| | - Ivan Bockovs
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Juris Bitenieks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Rita Berzina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| | - Alina Lebedeva
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, 1048 Riga, Latvia; (J.Z.); (T.I.); (I.B.); (J.B.); (R.B.); (A.L.)
| |
Collapse
|
6
|
Edo GI, Yousif E, Al-Mashhadani MH. Chitosan: An overview of biological activities, derivatives, properties, and current advancements in biomedical applications. Carbohydr Res 2024; 542:109199. [PMID: 38944980 DOI: 10.1016/j.carres.2024.109199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
The second and most often utilized natural polymer is chitosan (CS), a naturally existing amino polysaccharide that is produced by deacetylating chitin. Numerous applications have been the subject of in-depth investigation due to its non-hazardous, biologically compatible, and biodegradable qualities. Chitosan's characteristics, such as mucoadhesion, improved permeability, controlled release of drugs, in situ gelation process, and antibacterial activity, depend on its amino (-NH2) and hydroxyl groups (-OH). This study examines the latest findings in chitosan research, including its characteristics, derivatives, preliminary research, toxic effects, pharmaceutical kinetics and chitosan nanoparticles (CS-NPs) based for non-parenteral delivery of drugs. Chitosan and its derivatives have a wide range of physical and chemical properties that make them highly promising for use in the medicinal and pharmaceutical industries. The characteristics and biological activities of chitosan and its derivative-based nanomaterials for the delivery of drugs, therapeutic gene transfer, delivery of vaccine, engineering tissues, evaluations, and other applications in medicine are highlighted in detail in the current review. Together with the techniques for binding medications to nanoparticles, the application of the nanoparticles was also dictated by their physical properties that were classified and specified. The most recent research investigations on delivery of drugs chitosan nanoparticle-based medication delivery methods applied topically, through the skin, and through the eyes were considered.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq.
| | - Emad Yousif
- College of Science, Department of Chemistry, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
7
|
Saadh MJ, Hsu CY, Mustafa MA, Mutee AF, Kaur I, Ghildiyal P, Ali AJA, Adil M, Ali MS, Alsaikhan F, Narmani A, Farhood B. Advances in chitosan-based blends as potential drug delivery systems: A review. Int J Biol Macromol 2024; 273:132916. [PMID: 38844287 DOI: 10.1016/j.ijbiomac.2024.132916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
During the last decades, the ever-increasing incidence of diseases has led to high rates of mortality throughout the world. On the other hand, the inability and deficiencies of conventional approaches (such as chemotherapy) in the suppression of diseases remain challenging issues. As a result, there is a fundamental requirement to develop novel, biocompatible, bioavailable, and practical nanomaterials to prevent the incidence and mortality of diseases. Chitosan (CS) derivatives and their blends are outstandingly employed as promising drug delivery systems for disease therapy. These biopolymers are indicated more efficient performance against diseases compared with conventional modalities. The CS blends possess improved physicochemical properties, ease of preparation, high affordability, etc. characteristics compared with other biopolymers and even pure CS which result in efficient thermal, mechanical, biochemical, and biomedical features. Also, these blends can be administrated through different routes without a long-term treatment period. Due to the mentioned properties, numerous formulations of CS blends are developed for pharmaceutical sciences to treat diseases. This review article highlights the progressions in the development of CS-based blends as potential drug delivery systems against diseases.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan; Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA.
| | | | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Das U, Kapoor DU, Singh S, Prajapati BG. Unveiling the potential of chitosan-coated lipid nanoparticles in drug delivery for management of critical illness: a review. Z NATURFORSCH C 2024; 79:107-124. [PMID: 38721838 DOI: 10.1515/znc-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 07/04/2024]
Abstract
Chitosan (CT), a natural, cationic, chemically stable molecule, biocompatible, biodegradable, nontoxic, polysaccharide derived from the deacetylation of chitin, has very uniquely surfaced as a material of promise for drug delivery and biomedical applications. For the oral, ocular, cutaneous, pulmonary, and nose-to-brain routes, CT-coated nanoparticles (CTCNPs) have numerous advantages, consisting of improved controlled drug release, physicochemical stability, improved cell and tissue interactions, and increased bioavailability and efficacy of the active ingredient. CTCNPs have a broad range of therapeutic properties including anticancer, antiviral, antifungal, anti-inflammatory, antibacterial properties, treating neurological disorders, and other diseases. This has led to substantial research into the many potential uses of CT as a drug delivery vehicle. CT has also been employed in a wide range of biomedical processes, including bone and cartilage tissue regeneration, ocular tissue regeneration, periodontal tissue regeneration, heart tissue regeneration, and wound healing. Additionally, CT has been used in cosmeceutical, bioimaging, immunization, and gene transfer applications. CT exhibits a number of biological activities, which are the basis for its remarkable potential for use as a drug delivery vehicle, and these activities are covered in detail in this article. The alterations applied to CT to obtain the necessary properties have been described.
Collapse
Affiliation(s)
- Ushasi Das
- Department of Pharmaceutical Technology, 30167 Jadavpur University , Jadavpur, Kolkata, West Bengal 700032, India
| | - Devesh U Kapoor
- 78467 Dr. Dayaram Patel Pharmacy College , Bardoli 394601, India
| | - Sudarshan Singh
- Office of Research Administration, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
- Faculty of Pharmacy, 26682 Chiang Mai University , Chiang Mai 50200, Thailand
| | - Bhupendra G Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, 79233 Ganpat University , Kherva, Gujarat 384012, India
| |
Collapse
|
9
|
Kruczkowska W, Gałęziewska J, Grabowska K, Liese G, Buczek P, Kłosiński KK, Kciuk M, Pasieka Z, Kałuzińska-Kołat Ż, Kołat D. Biomedical Trends in Stimuli-Responsive Hydrogels with Emphasis on Chitosan-Based Formulations. Gels 2024; 10:295. [PMID: 38786212 PMCID: PMC11121652 DOI: 10.3390/gels10050295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Biomedicine is constantly evolving to ensure a significant and positive impact on healthcare, which has resulted in innovative and distinct requisites such as hydrogels. Chitosan-based formulations stand out for their versatile utilization in drug encapsulation, transport, and controlled release, which is complemented by their biocompatibility, biodegradability, and non-immunogenic nature. Stimuli-responsive hydrogels, also known as smart hydrogels, have strictly regulated release patterns since they respond and adapt based on various external stimuli. Moreover, they can imitate the intrinsic tissues' mechanical, biological, and physicochemical properties. These characteristics allow stimuli-responsive hydrogels to provide cutting-edge, effective, and safe treatment. Constant progress in the field necessitates an up-to-date summary of current trends and breakthroughs in the biomedical application of stimuli-responsive chitosan-based hydrogels, which was the aim of this review. General data about hydrogels sensitive to ions, pH, redox potential, light, electric field, temperature, and magnetic field are recapitulated. Additionally, formulations responsive to multiple stimuli are mentioned. Focusing on chitosan-based smart hydrogels, their multifaceted utilization was thoroughly described. The vast application spectrum encompasses neurological disorders, tumors, wound healing, and dermal infections. Available data on smart chitosan hydrogels strongly support the idea that current approaches and developing novel solutions are worth improving. The present paper constitutes a valuable resource for researchers and practitioners in the currently evolving field.
Collapse
Affiliation(s)
- Weronika Kruczkowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Julia Gałęziewska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Katarzyna Grabowska
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Gabriela Liese
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Paulina Buczek
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Karol Kamil Kłosiński
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Zbigniew Pasieka
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
| | - Żaneta Kałuzińska-Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Damian Kołat
- Department of Biomedicine and Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland; (W.K.); (J.G.); (K.G.); (G.L.); (P.B.); (K.K.K.); (Z.P.); (Ż.K.-K.)
- Department of Functional Genomics, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
10
|
Almajidi YQ, Ponnusankar S, Chaitanya MVNL, Marisetti AL, Hsu CY, Dhiaa AM, Saadh MJ, Pal Y, Thabit R, Adhab AH, Alsaikhan F, Narmani A, Farhood B. Chitosan-based nanofibrous scaffolds for biomedical and pharmaceutical applications: A comprehensive review. Int J Biol Macromol 2024; 264:130683. [PMID: 38458289 DOI: 10.1016/j.ijbiomac.2024.130683] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Nowadays, there is a wide range of deficiencies in treatment of diseases. These limitations are correlated with the inefficient ability of current modalities in the prognosis, diagnosis, and treatment of diseases. Therefore, there is a fundamental need for the development of novel approaches to overcome the mentioned restrictions. Chitosan (CS) nanoparticles, with remarkable physicochemical and mechanical properties, are FDA-approved biomaterials with potential biomedical aspects, like serum stability, biocompatibility, biodegradability, mucoadhesivity, non-immunogenicity, anti-inflammatory, desirable pharmacokinetics and pharmacodynamics, etc. CS-based materials are mentioned as ideal bioactive materials for fabricating nanofibrous scaffolds. Sustained and controlled drug release and in situ gelation are other potential advantages of these scaffolds. This review highlights the latest advances in the fabrication of innovative CS-based nanofibrous scaffolds as potential bioactive materials in regenerative medicine and drug delivery systems, with an outlook on their future applications.
Collapse
Affiliation(s)
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty 643001, The Nilgiris, India
| | - M V N L Chaitanya
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Arya Lakshmi Marisetti
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 71710, Taiwan.
| | | | - Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Yogendra Pal
- Department of Pharmaceutical Chemistry, CT College of Pharmacy, Shahpur, Jalandhar, Punjab 144020, India
| | - Russul Thabit
- Medical Technical College, Al-Farahidi University, Iraq
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia; School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
11
|
Opriș O, Mormile C, Lung I, Stegarescu A, Soran ML, Soran A. An Overview of Biopolymers for Drug Delivery Applications. APPLIED SCIENCES 2024; 14:1383. [DOI: 10.3390/app14041383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Nowadays, drug delivery has an important role in medical therapy. The use of biopolymers in developing drug delivery systems (DDSs) is increasingly attracting attention due to their remarkable and numerous advantages, in contrast to conventional polymers. Biopolymers have many advantages (biodegradability, biocompatibility, renewability, affordability, and availability), which are extremely important for developing materials with applications in the biomedical field. Additionally, biopolymers are appropriate when they improve functioning and have a number of positive effects on human life. Therefore, this review presents the most used biopolymers for biomedical applications, especially in drug delivery. In addition, by combining different biopolymers DDSs with tailored functional properties (e.g., physical properties, biodegradability) can be developed. This review summarizes and provides data on the progress of research on biopolymers (chitosan, alginate, starch, cellulose, albumin, silk fibroin, collagen, and gelatin) used in DDSs, their preparation, and mechanism of action.
Collapse
Affiliation(s)
- Ocsana Opriș
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Cristina Mormile
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
- Faculty of Chemistry, University of Rome La Sapienza, P. le Aldo Moro 5, 00185 Rome, Italy
- INFN—National Laboratories of Frascati, Via Enrico Fermi 54, 00044 Frascati, Italy
| | - Ildiko Lung
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Adina Stegarescu
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Maria-Loredana Soran
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania
| | - Albert Soran
- Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, Romania
| |
Collapse
|
12
|
Huanbutta K, Sriamornsak P, Suwanpitak K, Klinchuen N, Deebugkum T, Teppitak V, Sangnim T. Key Fabrications of Chitosan Nanoparticles for Effective Drug Delivery Using Flow Chemistry Reactors. Int J Nanomedicine 2023; 18:7889-7900. [PMID: 38146468 PMCID: PMC10749571 DOI: 10.2147/ijn.s433756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction Chitosan nanoparticles have garnered considerable interest in the field of drug delivery owing to their distinctive properties, including biocompatibility, biodegradability, low toxicity, and ability to encapsulate a wide range of drugs. However, the conventional methods (eg, the drop method) for synthesizing chitosan nanoparticles often face limitations in regard to controlling the particle size, morphology, and scalability, hindering their extensive application in drug delivery systems. To overcome these challenges, this study explores using a novel flow chemistry reactor design for fabricating clindamycin-loaded chitosan nanoparticles. Methods By varying two critical operating parameters of flow chemistry, namely, the flow rate ratio and total flow rate, the impact of these parameters on the properties of chitosan nanoparticles is investigated using a central composite experimental design. Results The optimized conditions for nanoparticle preparation yielded remarkable results, with chitosan nanoparticles exhibiting a small size of 371.60 nm and an extremely low polydispersity index of 0.042. Furthermore, using novel design flow chemistry reactor, the productivity of chitosan nanoparticles was estimated to be 25,402.17 mg/min, which was ~12.71 times higher than that obtained via batch synthesis. Conclusion The findings of this study indicate that the use of novel design flow chemistry reactor is promising for synthesizing clindamycin-loaded chitosan nanoparticles and other polymeric nanoparticles intended for drug delivery applications. This is primarily attributed to their ability to produce nanoparticles with a considerably reduced particle size distribution and smaller overall size. The demonstrated high productivity of this technique suggests the potential for industrial-scale nanoparticle manufacturing.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani, 12000, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand
- Academy of Science, the Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Kittipat Suwanpitak
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Nattapat Klinchuen
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Thanapat Deebugkum
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Vasanchai Teppitak
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| | - Tanikan Sangnim
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Burapha University, Chonburi, 20131, Thailand
| |
Collapse
|
13
|
Popa L, Ghica MV, Dinu-Pîrvu CE. Chitosan Biomaterials: Advances and Challenges. Int J Mol Sci 2023; 24:16150. [PMID: 38003340 PMCID: PMC10671132 DOI: 10.3390/ijms242216150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this Special Issue was to review research focusing on the development of formulations based on chitosan or its derivatives together with other molecules, producing biomaterials with improved physicochemical properties and effects [...].
Collapse
Affiliation(s)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020956 Bucharest, Romania; (L.P.); (C.-E.D.-P.)
| | | |
Collapse
|
14
|
Domingues C, Jarak I, Veiga F, Dourado M, Figueiras A. Pediatric Drug Development: Reviewing Challenges and Opportunities by Tracking Innovative Therapies. Pharmaceutics 2023; 15:2431. [PMID: 37896191 PMCID: PMC10610377 DOI: 10.3390/pharmaceutics15102431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The paradigm of pediatric drug development has been evolving in a "carrot-and-stick"-based tactic to address population-specific issues. However, the off-label prescription of adult medicines to pediatric patients remains a feature of clinical practice, which may compromise the age-appropriate evaluation of treatments. Therefore, the United States and the European Pediatric Formulation Initiative have recommended applying nanotechnology-based delivery systems to tackle some of these challenges, particularly applying inorganic, polymeric, and lipid-based nanoparticles. Connected with these, advanced therapy medicinal products (ATMPs) have also been highlighted, with optimistic perspectives for the pediatric population. Despite the results achieved using these innovative therapies, a workforce that congregates pediatric patients and/or caregivers, healthcare stakeholders, drug developers, and physicians continues to be of utmost relevance to promote standardized guidelines for pediatric drug development, enabling a fast lab-to-clinical translation. Therefore, taking into consideration the significance of this topic, this work aims to compile the current landscape of pediatric drug development by (1) outlining the historic regulatory panorama, (2) summarizing the challenges in the development of pediatric drug formulation, and (3) delineating the advantages/disadvantages of using innovative approaches, such as nanomedicines and ATMPs in pediatrics. Moreover, some attention will be given to the role of pharmaceutical technologists and developers in conceiving pediatric medicines.
Collapse
Affiliation(s)
- Cátia Domingues
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
| | - Ivana Jarak
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- Institute for Health Research and Innovation (i3s), University of Porto, 4200-135 Porto, Portugal
| | - Francisco Veiga
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Marília Dourado
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR) Area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Center for Health Studies and Research of the University of Coimbra (CEISUC), Faculty of Medicine, 3000-548 Coimbra, Portugal
- Univ Coimbra, Center for Studies and Development of Continuous and Palliative Care (CEDCCP), Faculty of Medicine, 3000-548 Coimbra, Portugal
| | - Ana Figueiras
- Univ Coimbra, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, 3000-548 Coimbra, Portugal; (C.D.); (I.J.); (F.V.)
- LAQV-REQUIMTE, Laboratory of Drug Development and Technologies, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
15
|
Saghebasl S, Amini H, Nobakht A, Haiaty S, Bagheri HS, Hasanpour P, Milani M, Saghati S, Naturi O, Farhadi M, Rahbarghazi R. Polyurethane-based nanofibrous mat containing porphyrin with photosensitivity and bactericidal properties can promote cutaneous tissue healing in rats. J Nanobiotechnology 2023; 21:313. [PMID: 37661273 PMCID: PMC10476421 DOI: 10.1186/s12951-023-02082-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The regeneration of cutaneous tissue is one of the most challenging issues in human regenerative medicine. To date, several studies have been done to promote cutaneous tissue healing with minimum side effects. The healing potential of polyurethane (PU)/Poly (caprolactone)-poly (ethylene glycol)-poly (caprolactone) (PCEC)/chitosan (CS) (PCS) nanofibrous mat with cationic photosensitizer meso tetrakis (N-methyl pyridinium-4-yl) porphyrin tetratosylate salt (TMP) was examined. The CS tripolyphosphate nanoparticles (CSNPs) were prepared and loaded by TMP to provide an efficient drug release system (TMPNPs) for delivery of TMP to promote wound healing. In in vitro setting, parameters such as bactericidal effects, cytocompatibility, and hemolytic effects were examined. The healing potential of prepared nanofibrous mats was investigated in a rat model of full-thickness cutaneous injury. PCS/TMP/TMPNPs nanofibers can efficiently release porphyrin in the aqueous phase. The addition of TMPNPs and CS to the PU backbone increased the hydrophilicity, degradation, and reduced mechanical properties. The culture of human fetal foreskin fibroblasts (HFFF2) on PCS/TMP/TMPNPs scaffold led to an increased survival rate and morphological adaptation analyzed by MTT and SEM images. Irradiation with a red laser (635 nm, 3 J/cm2) for the 30 s reduced viability of S. aureus and E. Coli bacteria plated on PCS/TMP and PCS/TMP/TMPNPs nanofibrous mats compared to PU/PCEC (PC) and PU/PCEC/CS (PCS) groups, indicating prominent antibacterial effects of PCS/TMP and PCS/TMP/TMPNPs nanofibrous (p < 0.05). Data indicated that PCS/TMP/TMPNPs mat enhanced healing of the full-thickness excisional wound in a rat model by the reduction of inflammatory response and fibrotic changes compared to the PC, and PCS groups (p < 0.05). Immunofluorescence imaging indicated that levels of Desmoglein were increased in rats that received PCS/TMP/TMPNPs compared to the other groups. It is found that a PU-based nanofibrous mat is an appropriate scaffold to accelerate the healing of injured skin.
Collapse
Affiliation(s)
- Solmaz Saghebasl
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Amini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of General and Vascular Surgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Nobakht
- Research Center of Biosciences & Biotechnology (RCBB), University of Tabriz, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parisa Hasanpour
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Milani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Saghati
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ozra Naturi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mehrdad Farhadi
- Department of Anatomical and Clinical Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|