1
|
Nettles J, Alfarhan S, Pascoe CA, Westover C, Madsen MD, Sintas JI, Subbiah A, Long TE, Jin K. Functional Upcycling of Polyurethane Thermosets into Value-Added Thermoplastics via Small-Molecule Carbamate-Assisted Decross-Linking Extrusion. JACS AU 2024; 4:3058-3069. [PMID: 39211581 PMCID: PMC11350600 DOI: 10.1021/jacsau.4c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 09/04/2024]
Abstract
The cross-linked structures of most commodity polyurethanes (PUs) hinder their recycling by common mechanical/chemical approaches. Catalyzed dynamic carbamate exchange emerges as a promising PU recycling strategy, which converts traditional static PU thermosets into reprocessable covalent adaptable networks (CANs). However, this approach has been limited to thermoset-to-thermoset reprocessing of PU CANs, accompanied by their well-preserved network structures and extremely high viscosities, which pose challenges to processing and certain applications. This study reports a catalytic decross-linking extrusion process aided by small-molecule carbamates, which can upcycle PU thermosets into easily processable and functional PU thermoplastics in a solvent-free and high-throughput manner. Key to this process is the employment of small-molecule carbamates as decross-linkers to simultaneously deconstruct cross-linked PUs and functionalize the decross-linked PU chains, through catalyzed carbamate exchange reactions in a twin-screw extruder. This strategy applies to both aromatic and aliphatic cross-linked PU films and foams, and the amount of small-molecule carbamates required to decross-link PU networks is determined through thermal, chemical, and structural analyses of the resulting extrudates. This approach is generalizable to small-molecule carbamates with various steric/electronic structures and chemical functionalities including methacrylate, anthracene, and stilbene groups. The chain-end functionalization is confirmed by analyzing the purified decross-linked extrudates after dialysis. This thermoset-to-thermoplastic extrusion process represents a powerful approach for upcycling postconsumer PU thermosets into a library of thermoplastic PUs with controlled molecular weights and chain-end functionalities for diverse applications, including adhesives, photoresins, and stimuli-responsive materials, as demonstrated herein. In the future, this strategy could be extended to upcycle many other step-growth networks capable of undergoing catalytic bond exchange reactions, such as cross-linked polyureas and polyesters, contributing to plastic waste management in general.
Collapse
Affiliation(s)
- Jared
A. Nettles
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Saleh Alfarhan
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Cameron A. Pascoe
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| | - Clarissa Westover
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe 85287, Arizona, United States
| | - Margaret D. Madsen
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Jose I. Sintas
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Aadhi Subbiah
- Department
of Chemical and Biological Engineering, Iowa State University, Ames 50011, Iowa, United States
| | - Timothy E. Long
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
- Chemistry,
School of Molecular Sciences, Arizona State
University, Tempe 85287, Arizona, United States
| | - Kailong Jin
- Chemical
Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe 85287, Arizona, United States
- Biodesign
Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe 85287, Arizona, United States
| |
Collapse
|
2
|
Miravalle E, Viada G, Bonomo M, Barolo C, Bracco P, Zanetti M. Recycling of Commercially Available Biobased Thermoset Polyurethane Using Covalent Adaptable Network Mechanisms. Polymers (Basel) 2024; 16:2217. [PMID: 39125243 PMCID: PMC11314662 DOI: 10.3390/polym16152217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Until recently, recycling thermoset polyurethanes (PUs) was limited to degrading methods. The development of covalent adaptable networks (CANs), to which PUs can be assigned, has opened novel possibilities for actual recycling. Most efforts in this area have been directed toward inventing new materials that can benefit from CAN theory; presently, little or nothing has been applied to industrially producible materials. In this study, both an industrially available polyol (Sovermol780®) and isocyanate (Tolonate X FLO 100®) with percentages of bioderived components were employed, resulting in a potentially scalable and industrially producible material. The resultant network could be reworked up to three times, maintaining the crosslinked structure without significantly changing the thermal properties. Improvements in mechanical parameters were observed when comparing the pristine material to the material exposed to three rework processes, with gains of roughly 50% in elongation at break and 20% in tensile strength despite a 25% decrease in Young's modulus and crosslink density. Thus, it was demonstrated that theory may be profitably applied even to materials that are not designed including additional bonds but instead rely just on the dynamic urethane bond that is naturally present in the network.
Collapse
Affiliation(s)
- Edoardo Miravalle
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
| | - Gabriele Viada
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
| | - Matteo Bonomo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Claudia Barolo
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Pierangiola Bracco
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| | - Marco Zanetti
- Department of Chemistry, NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy; (E.M.); (M.B.)
- Instm Reference Centre, University of Turin, Via G. Quarello 15A, 10135 Turin, Italy
- SUSPLAS@UniTo, Sustainable Plastic Scientific Hub, University of Turin, Via Pietro Giuria 7, 10125 Turin, Italy
| |
Collapse
|
3
|
Pruksawan S, Chong YT, Zen W, Loh TJE, Wang F. Sustainable Vat Photopolymerization-Based 3D-Printing through Dynamic Covalent Network Photopolymers. Chem Asian J 2024; 19:e202400183. [PMID: 38509002 DOI: 10.1002/asia.202400183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Vat photopolymerization (VPP) based three-dimensional (3D) printing, including stereolithography (SLA) and digital light projection (DLP), is known for producing intricate, high-precision prototypes with superior mechanical properties. However, the challenge lies in the non-recyclability of covalently crosslinked thermosets used in these printing processes, limiting the sustainable utilization of printed prototypes. This review paper examines the recently explored avenue of VPP 3D-printed dynamic covalent network (DCN) polymers, which enable reversible crosslinks and allow for the reprocessing of printed prototypes, promoting sustainability. These reversible crosslinks facilitate the rearrangement of crosslinked polymers, providing printed polymers with chemical/physical recyclability, self-healing capabilities, and degradability. While various mechanisms for DCN polymer systems are explored, this paper focuses solely on photocurable polymers to highlight their potential to revolutionize the sustainability of VPP 3D printing.
Collapse
Affiliation(s)
- Sirawit Pruksawan
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Wylma Zen
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- College of Design and Engineering, National University of Singapore (NUS), 4 Engineering Drive 3, Singapore, 117583, Republic of Singapore
| | - Terence Jun En Loh
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Nanyang Polytechnic, 180 Ang Mo Kio Avenue 8, Singapore, 569830, Republic of Singapore
| | - FuKe Wang
- Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
4
|
Carbonell-Blasco MP, Moyano MA, Hernández-Fernández C, Sierra-Molero FJ, Pastor IM, Alonso DA, Arán-Aís F, Orgilés-Calpena E. Polyurethane Adhesives with Chemically Debondable Properties via Diels-Alder Bonds. Polymers (Basel) 2023; 16:21. [PMID: 38201686 PMCID: PMC10780649 DOI: 10.3390/polym16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Covalent adaptable networks (CANs) represent a pioneering advance in polymer science, offering unprecedented versatility in materials design. Unlike conventional adhesives with irreversible bonds, CAN-based polyurethane adhesives have the unique ability to undergo chemical restructuring through reversible bonds. One of the strategies for incorporating these types of reactions in polyurethanes is by functionalisation with Diels-Alder (DA) adducts. By taking advantage of the reversible nature of the DA chemistry, the adhesive undergoes controlled crosslinking and decrosslinking processes, allowing for precise modulation of bond strength. This adaptability is critical in applications requiring reworkability or recyclability, as it allows for easy disassembly and reassembly of bonded components without compromising the integrity of the material. This study focuses on the sustainable synthesis and characterisation of a solvent-based polyurethane adhesive, obtained by functionalising a polyurethane prepolymer with DA diene and dienophiles. The characterisation of the adhesives was carried out using different experimental techniques: nuclear magnetic resonance spectroscopy (NMR), Brookfield viscosity, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and T-peel strength testing of leather/adhesive/rubber joints to determine the adhesive properties, both before and after the application of external stimuli. The conversion of both the DA and retro-Diels-Alder (r-DA) reactions was confirmed by 1H-NMR. The adhesive properties were not altered by the functionalisation of the adhesive prepolymer, showing similar thermal resistance and good rheological and adhesive properties, even exceeding the most demanding technical requirements for upper-to-sole joints in footwear. After the application of an external thermal stimuli, the bonded materials separated without difficulty and without damage, thus facilitating their separation, recovery and recycling.
Collapse
Affiliation(s)
- María Pilar Carbonell-Blasco
- Footwear Technology Centre, Campo Alto Campo, Elda, 03600 Alicante, Spain; (M.A.M.); (C.H.-F.); (F.A.-A.); (E.O.-C.)
| | - María Alejandra Moyano
- Footwear Technology Centre, Campo Alto Campo, Elda, 03600 Alicante, Spain; (M.A.M.); (C.H.-F.); (F.A.-A.); (E.O.-C.)
| | - Carlota Hernández-Fernández
- Footwear Technology Centre, Campo Alto Campo, Elda, 03600 Alicante, Spain; (M.A.M.); (C.H.-F.); (F.A.-A.); (E.O.-C.)
| | - Francisco J. Sierra-Molero
- Department of Organic Chemistry, Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, P.O. Box 99, 03080 Alicante, Spain; (F.J.S.-M.); (I.M.P.); (D.A.A.)
| | - Isidro M. Pastor
- Department of Organic Chemistry, Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, P.O. Box 99, 03080 Alicante, Spain; (F.J.S.-M.); (I.M.P.); (D.A.A.)
| | - Diego A. Alonso
- Department of Organic Chemistry, Institute of Organic Synthesis (ISO), Faculty of Sciences, University of Alicante, P.O. Box 99, 03080 Alicante, Spain; (F.J.S.-M.); (I.M.P.); (D.A.A.)
| | - Francisca Arán-Aís
- Footwear Technology Centre, Campo Alto Campo, Elda, 03600 Alicante, Spain; (M.A.M.); (C.H.-F.); (F.A.-A.); (E.O.-C.)
| | - Elena Orgilés-Calpena
- Footwear Technology Centre, Campo Alto Campo, Elda, 03600 Alicante, Spain; (M.A.M.); (C.H.-F.); (F.A.-A.); (E.O.-C.)
| |
Collapse
|