1
|
Forero-López AD, Colombo CV, Loperena AP, Morales-Pontet NG, Ronda AC, Lehr IL, De-la-Torre GE, Ben-Haddad M, Aragaw TA, Suaria G, Rimondino GN, Malanca FE, Botté SE. Paint particle pollution in aquatic environments: Current advances and analytical challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135744. [PMID: 39270584 DOI: 10.1016/j.jhazmat.2024.135744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Paints, coatings and varnishes play a crucial role in various industries and daily applications, providing essential material protection and enhancing aesthetic characteristics. However, they sometimes present environmental challenges such as corrosion, wear, and biofouling which lead to economic losses and ecological harm. Paint particles (PPs), including antifouling/anticorrosive paint particles (APPs), originate from marine, industrial, and architectural activities, primarily due to paint leakage, wear, and removal, thus significantly contributing to marine pollution. These particles are often misclassified as microplastics (MPs) because of their polymeric content, so the abundance of these materials is often underestimated. Standardized assessment methodologies are imperative to accurately differentiate and quantify them. Since PPs/APPs incorporate hazardous substances like metals, biocides, and additives that leach into the environment, further investigation into their potential impacts on organisms is of utmost importance to understand their complex composition and toxicity. While essential characterization techniques are needed, a holistic approach, focusing on sustainable paint formulations, is crucial for effective pollution mitigation. This review delves into the intricate structure of paint systems, elucidating the mechanisms governing the aging and formation of PPs/APPs, their prevalence and subsequent environmental and ecotoxicological repercussions. Additionally, it addresses challenges in sampling, processing, and characterizing PPs/APPs, advocating standardized approaches to mitigate their environmental threats, and proposing new perspectives for the future.
Collapse
Affiliation(s)
- A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina.
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina
| | - A P Loperena
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - N G Morales-Pontet
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - A C Ronda
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - I L Lehr
- Instituto de Ingeniería Electroquímica y Corrosión (INIEC), Departamento de Ingeniería Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| | - G E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - M Ben-Haddad
- Laboratory of Aquatic Systems: Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir, Morocco
| | - T A Aragaw
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - G Suaria
- Institute of Marine Sciences - National Research Council (CNR-ISMAR), Lerici, La Spezia 19032, Italy
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - F E Malanca
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - S E Botté
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, Buenos Aires B8000FWB, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| |
Collapse
|
2
|
Goshayeshi HR, Mousavi SB, Heris SZ, Chaer I. Insights into two-phase flow dynamics in closed-loop pulsating heat pipes utilizing Fe 3O 4/water: experimental visualization study. Sci Rep 2024; 14:16497. [PMID: 39020123 PMCID: PMC11255214 DOI: 10.1038/s41598-024-67637-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024] Open
Abstract
This article discusses a focused study on visualizing the flow patterns in a two-phase pulsating heat pipe (PHP) using Fe3O4/water as the working fluid at 3 V/V% concentration. The research also aims to meticulously examine phase change phenomena in the heating section, particularly focusing on bubble formation and expansion processes. A high-speed video camera was utilized to capture dynamic insights into the behavior of the Fe3O4/water mixture. Based on the findings, a straightforward model was developed to explain bubble generation and growth in the mixture, serving as a useful reference for future PHP designs and optimizations. Visual observations also noted the stable nature of the Fe3O4/water nanofluid over a 4-day period, confirming its consistency throughout the experiments. Moreover, the impact of heat load variation on the evaporator section was assessed using controlled heat inputs ranging from 10 to 80 W. Observations on the arrangement of slugs and plugs at a 50% filling ratio revealed interesting self-adjusting flow patterns in response to increasing heat inputs, providing valuable insights into PHP operational dynamics. Notably, the oscillatory flow behavior of Fe3O4/water, the chosen working fluid, exhibited greater activity in comparison to water. This distinctive flow behavior contributed to achieving heightened thermal performance efficiency for the Fe3O4/water system, attributed to its faster attainment of the annular flow condition.
Collapse
Affiliation(s)
- Hamid Reza Goshayeshi
- Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Seyed Borhan Mousavi
- J. Mike Walker '66 Mechanical Engineering Department, Texas A&M University, College Station, TX, 77843, USA.
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Saeed Zeinali Heris
- School of Safety Science and Engineering, Xi'an University of Science and Technology, 58, Yanta Mid. Rd., Xi'an, 710054, Shaanxi, China.
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Issa Chaer
- School of Built Environment and Architecture, London South Bank University, London, SE1 0AA, UK
| |
Collapse
|
3
|
Jiang B, Zhang Y, Wang R, Wang T, Zeng E. Innovative Acrylic Resin-Hydrogel Double-Layer Coating: Achieving Dual-Anchoring, Enhanced Adhesion, and Superior Anti-Biofouling Properties for Marine Applications. Gels 2024; 10:320. [PMID: 38786238 PMCID: PMC11121321 DOI: 10.3390/gels10050320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/23/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
Traditional anti-corrosion and anti-fouling coatings struggle against the harsh marine environment. Our study tackled this by introducing a novel dual-layer hydrogel (A-H DL) coating system. This system combined a Cu2O-SiO2-acrylic resin primer for anchoring and controlled copper ion release with a dissipative double-network double-anchored hydrogel (DNDAH) boasting superior mechanical strength and anti-biofouling performance. An acrylamide monomer was copolymerized and cross-linked with a coupling agent to form the first irreversible network and first anchoring, providing the DNDAH coating with mechanical strength and structural stability. Alginate gel microspheres (AGMs) grafted with the same coupling agent formed the second reversible network and second anchoring, while coordinating with Cu2+ released from the primer to form a system buffering Cu2+ release, enabling long-term antibacterial protection and self-healing capabilities. FTIR, SEM, TEM, and elemental analyses confirmed the composition, morphology, and copper distribution within the A-H DL coating. A marine simulation experiment demonstrated exceptional stability and anti-fouling efficacy. This unique combination of features makes A-H DL a promising solution for diverse marine applications, from ship hulls to aquaculture equipment.
Collapse
Affiliation(s)
- Boning Jiang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Yuhan Zhang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Ruiyang Wang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
| | - Ting Wang
- Aulin College, Northeastern Forestry University, Harbin 150040, China; (B.J.); (Y.Z.); (R.W.)
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - En Zeng
- Rongbang Chemical Co., Ltd., Suining 629000, China
| |
Collapse
|
4
|
Putra NR, Ismail A, Sari DP, Nurcholis N, Murwatono TT, Rina R, Yuniati Y, Suwarni E, Sasmito A, Virliani P, Alif Rahadi SJ, Irianto I, Widati AA. A bibliometric analysis of cellulose anti-fouling in marine environments. Heliyon 2024; 10:e28513. [PMID: 38596028 PMCID: PMC11002589 DOI: 10.1016/j.heliyon.2024.e28513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Marine biofouling poses significant challenges to maritime industries worldwide, affecting vessel performance, fuel efficiency, and environmental sustainability. These challenges demand innovative and sustainable solutions. In this review, the evolving landscape of cellulose-based materials for anti-fouling applications in marine environments is explored. Through a comprehensive bibliometric analysis, the current state of research is examined, highlighting key trends, emerging technologies, and geographical distributions. Cellulose, derived from renewable resources, offers a promising avenue for sustainable anti-fouling strategies due to its biodegradability, low toxicity, and resistance to microbial attachment. Recent advancements in cellulose-based membranes, coatings, and composites are discussed, showcasing their efficacy in mitigating biofouling while minimizing environmental impact. Opportunities for interdisciplinary collaboration and innovation are identified to drive the development of next-generation anti-fouling solutions. By harnessing the power of cellulose, progress towards cleaner, more sustainable oceans can be facilitated, fostering marine ecosystems and supporting global maritime industries.
Collapse
Affiliation(s)
- Nicky Rahmana Putra
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Abdi Ismail
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Dian Purnama Sari
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Nurcholis Nurcholis
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | | | - Rina Rina
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Yuniati Yuniati
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Endah Suwarni
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Agus Sasmito
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Putri Virliani
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Shinta Johar Alif Rahadi
- Research Center for Hydrodynamic Technology, National Research and Innovation Agency, Surabaya, Indonesia
| | - Irianto Irianto
- Department General Education, Faculty of Resilience, Rabdan Academy, Abu Dhabi, United Arab Emirates
| | | |
Collapse
|
5
|
Khatamian M, Derakhshan SK, Nami SH, Fazli-Shokouhi S. Nitrate removal study of synthesized nano γ-alumina and magnetite-alumina nanocomposite adsorbents prepared by various methods and precursors. Sci Rep 2024; 14:7673. [PMID: 38561453 PMCID: PMC10984990 DOI: 10.1038/s41598-024-58459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
The challenges in water treatment include the need for efficient removal of pollutants like nitrate, which poses significant environmental and health risks. Alumina's significance lies in its proven effectiveness as an adsorbent for nitrate removal due to its high surface area and affinity for nitrate ions. This study delves into the synthesis of differen nano-sized γ-alumina (γA1-5) employing diverse precursors and methods, including nepheline syenite, lime, aluminum hydroxide, precipitation, and hydrothermal processes at varying reaction times. Simultaneously, magnetite (Fe3O4) nanoparticles and magnetite/γ-alumina nanocomposites (Fn/γA5) were synthesized using the co-precipitation method with varying weight ratios (n). Our primary objective was to optimize γ-alumina synthesis by comparing multiple methods, shedding light on the influence of different precursors and sources. Hence, a comprehensive adsorption study was conducted to assess the materials' efficacy in nitrate removal. This study fills gaps in the literature, providing a novel perspective through the simultaneous assessment of magnetite/alumina nanocomposites and pure alumina performance. Structural and morphological properties were studied employing XRD, FT-IR, FESEM, EDX, XRD, and VSM techniques. The conducted experiments for γA5, F5/γA5, and F10/γA5 nanocomposites showcased the optimum pH of 5 and contact time of 45 min for all samples. The influence of nitrate's initial concentration on the removal percentage was investigated with initial concentrations of 10 ppm, 50 ppm, and 100 ppm. γA5, F5/γA5 and F10/γA5 nanocomposites had 17.3%, 55%, and 70% at 10 ppm, 18%, 55.16%, and 74% at 50 ppm, and 8.6%, 53.1%, and 63%, respectively. The results highlighted that F10/γA5 can be used as a remarkable adsorbent for wastewater treatment purposes.
Collapse
Affiliation(s)
- Maasoumeh Khatamian
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, 5166616471, Iran.
| | | | - Shamin Hosseini Nami
- School of Chemical, Biological, and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | - Sara Fazli-Shokouhi
- Faculty of Materials Engineering, Sahand University of Technology, Tabriz, 513351996, Iran
| |
Collapse
|
6
|
Heris SZ, Ebadiyan H, Mousavi SB, Nami SH, Mohammadpourfard M. The influence of nano filter elements on pressure drop and pollutant elimination efficiency in town border stations. Sci Rep 2023; 13:18793. [PMID: 37914806 PMCID: PMC10620236 DOI: 10.1038/s41598-023-46129-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023] Open
Abstract
Natural gas stands as the most ecologically sustainable fossil fuel, constituting nearly 25% of worldwide primary energy utilization and experiencing rapid expansion. This article offers an extensive comparative analysis of nano filter elements, focusing on pressure drop and pollutant removal efficiency. The primary goal was to assess the superior performance of nano filter elements and their suitability as an alternative for Town Border Station (TBS). The research encompassed a six-month examination period, involving routine pressure assessments, structural examinations, and particle characterization of the filter elements. The results revealed that nano filters showed better performance in adsorbing aluminum than conventional filters, possibly due to their cartridge composition. Nano filters contained phosphorus, sulfur, and copper, while conventional filters lacked these elements. The disparity can be attributed to the finer mesh of the nano filter, capturing smaller pollutants. Although the nano filter had minimal silicon, the conventional filter showed some, posing concerns. Despite having 19 extra pleats, the nano filter maintained gas flow pressure while capturing more particles than the conventional filter.
Collapse
Affiliation(s)
- Saeed Zeinali Heris
- Xi'an University of Science and Technology, No. 58, Middle Section of Yanta Road, Xi'an, 710054, Shaanxi, China.
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
| | - Hamed Ebadiyan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Seyed Borhan Mousavi
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran.
- J. Mike Walker '66 Mechanical Engineering Department, Texas A&M University, College Station, TX, 77843, USA.
| | - Shamin Hosseini Nami
- School of Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, OK, 73019, USA
| | | |
Collapse
|