1
|
Căta A, Ienașcu IMC, Ştefănuț MN, Roșu D, Pop OR. Properties and Bioapplications of Amphiphilic Janus Dendrimers: A Review. Pharmaceutics 2023; 15:589. [PMID: 36839911 PMCID: PMC9958631 DOI: 10.3390/pharmaceutics15020589] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Amphiphilic Janus dendrimers are arrangements containing both hydrophilic and hydrophobic units, capable of forming ordered aggregates by intermolecular noncovalent interactions between the dendrimer units. Compared to conventional dendrimers, these molecular self-assemblies possess particular and effective attributes i.e., the presence of different terminal groups, essential to design new elaborated materials. The present review will focus on the pharmaceutical and biomedical application of amphiphilic Janus dendrimers. Important information for the development of novel optimized pharmaceutical formulations, such as structural classification, synthetic pathways, properties and applications, will offer the complete characterization of this type of Janus dendrimers. This work will constitute an up-to-date background for dendrimer specialists involved in designing amphiphilic Janus dendrimer-based nanomaterials for future innovations in this promising field.
Collapse
Affiliation(s)
- Adina Căta
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Ioana Maria Carmen Ienașcu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, “Vasile Goldiș” Western University of Arad, 86 Liviu Rebreanu, 310045 Arad, Romania
| | - Mariana Nela Ştefănuț
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Dan Roșu
- National Institute of Research and Development for Electrochemistry and Condensed Matter, 144 Dr. A. P. Podeanu, 300569 Timişoara, Romania
| | - Oana-Raluca Pop
- Faculty of Pharmacy, University of Medicine and Pharmacy “Victor Babeș” Timișoara, 2 Eftimie Murgu Square, 300041 Timișoara, Romania
| |
Collapse
|
2
|
Castillo‐Rodríguez IO, Hernández‐Alducin PA, Pedro‐Hernández LD, Barajas‐Mendoza I, Ramírez‐Ápan T, Martínez‐García M. Antileukemia and Anticolorectal Cancer Activity of Janus Dendrimer Conjugates with Naproxen and Ibuprofen. ChemistrySelect 2023. [DOI: 10.1002/slct.202204220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Irving Osiel Castillo‐Rodríguez
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Pablo Abraham Hernández‐Alducin
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Luis Daniel Pedro‐Hernández
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Israel Barajas‐Mendoza
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Teresa Ramírez‐Ápan
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| | - Marcos Martínez‐García
- Departament of Orgánic Chemistry Instituto de Química Universidad Nacional Autónoma de México Ciudad Universitaria, Circuito Exterior, Coyoacán, C.P. 04510 México D.F. México
| |
Collapse
|
3
|
Functionalized Hyperbranched Aliphatic Polyester Polyols: Synthesis, Properties and Applications. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2823-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Tsai HY, Algar WR. A Dendrimer-Based Time-Gated Concentric FRET Configuration for Multiplexed Sensing. ACS NANO 2022; 16:8150-8160. [PMID: 35499916 DOI: 10.1021/acsnano.2c01473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Förster resonance energy transfer (FRET) is widely used for the development of biological probes and sensors. In this context, the norm for multiplexed detection is deployment of multiple probes, each a discrete donor-acceptor pair. Concentric FRET (cFRET) probes enable multiplexed sensing with a single vector but, to date, have only been developed around semiconductor quantum dots, which may limit the scope of biological applications for such probes. Here, we demonstrate that dendrimers labeled with a luminescent terbium complex (Tb) are a viable and advantageous alternative platform for cFRET probes. Polyamidoamine dendrimers were functionalized with Tb, biotin, NeutrAvidin, and three types of dye-labeled oligonucleotide probes to establish a network of competitive and sequential Tb-to-dye and dye-to-dye FRET pathways. These probes were characterized physically and photophysically, and a time-gated multiplexed assay for DNA targets was demonstrated. The time-gating offered by the Tb allowed the rejection of background autofluorescence from serum. More broadly, this dendrimer-based architecture shows that cFRET is a general concept and is an important step toward a new generation of probes for biological sensing.
Collapse
Affiliation(s)
- Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
Gonçalves M, Kairys V, Rodrigues J, Tomás H. Polyester Dendrimers Based on Bis-MPA for Doxorubicin Delivery. Biomacromolecules 2022; 23:20-33. [PMID: 34870412 DOI: 10.1021/acs.biomac.1c00455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although doxorubicin (DOX) is one of the most used chemotherapeutic drugs due to its efficacy against a wide group of cancer types, it presents severe side effects. As such, intensive research is being carried out to find new nanoscale systems that can help to overcome this problem. Polyester dendrimers based on the monomer 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) are very promising systems for biomedical applications due to their biodegradability properties. In this study, bis-MPA-based dendrimers were, for the first time, evaluated as DOX delivery vehicles. Generations 4 and 5 of bis-MPA-based dendrimers with hydroxyl groups at the surface were used (B-G4-OH and B-G5-OH), together with dendrimers partially functionalized with amine groups (B-G4-NH2/OH and B-G5-NH2/OH). Partial functionalization was chosen because the main purpose was to compare the effect of different functional groups on dendrimers' drug delivery behavior without compromising cell viability, which is often affected by dendrimers' cationic charge. Results revealed that bis-MPA-based dendrimers were cytocompatible, independently of the chemical groups that were present at their surface. The B-G4-NH2/OH and B-G5-NH2/OH dendrimers were able to retain a higher number of DOX molecules, but the in vitro release of the drug was faster. On the contrary, the hydroxyl-terminated dendrimers exhibited a lower loading capacity but were able to deliver the drug in a more sustained manner. These results were in accordance with the cytotoxicity studies performed in several models of cancer cell lines and human mesenchymal stem cells. Overall, the results confirmed that it is possible to tune the drug delivery properties of bis-MPA-based dendrimers by modifying surface functionalization. Moreover, molecular modeling studies provided insights into the nature of the interactions established between the drug and the bis-MPA-based dendrimers─DOX molecules attach to their surface rather than being physically encapsulated.
Collapse
Affiliation(s)
- Mara Gonçalves
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Visvaldas Kairys
- Department of Bioinformatics, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio Avenue 7, LT-10257 Vilnius, Lithuania
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Helena Tomás
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
6
|
López-Méndez LJ, Palomares-Alonso F, González-Hernández I, Jung-Cook H, Cabrera-Quiñones NC, Guadarrama P. β-cyclodextrin dendritic derivatives as permeation mediators to enhance the in vitro albendazole cysticidal activity by the improvement of the diffusion component. RSC Adv 2022; 12:23153-23161. [PMID: 36090413 PMCID: PMC9382653 DOI: 10.1039/d2ra03314c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
βCD dendritic derivatives are stable and suitable nanocarriers to enhance ABZ potency by improving solubility and permeation.
Collapse
Affiliation(s)
- Luis José López-Méndez
- Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Villa Quietud, Coyoacán, 04960, CDMX, Mexico
| | - Francisca Palomares-Alonso
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, 14269, CDMX, Mexico
| | - Iliana González-Hernández
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, 14269, CDMX, Mexico
| | - Helgi Jung-Cook
- Laboratorio de Neuropsicofarmacología, Instituto Nacional de Neurología y Neurocirugía, 14269, CDMX, Mexico
- Facultad de Química, Departamento de Farmacia, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| | | | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, 04510, CDMX, Mexico
| |
Collapse
|
7
|
Cruz-Hernández C, López-Méndez LJ, Guadarrama P. Dendronization: A practical strategy to improve the performance of molecular systems used in biomedical applications. Eur J Med Chem 2021; 229:113988. [PMID: 34801269 DOI: 10.1016/j.ejmech.2021.113988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023]
Abstract
Nanomedicine is an emerging area that largely influences the efficacy of various therapies through the rational design of new materials exhibiting more targeted behavior. The synthetic effort, the amount of used material, and the cost are critical parameters to bear in mind if the production of the designed material is intended to be scaled for their widespread use. Even though materials science offers diverse options for different types of therapies, it is a difficult task to meet all the parameters mentioned above. The dendronization appears as an insightful approach to incorporate all the known benefits of the dendritic architecture by the attachment of dendrons to therapeutic agents, but in a much more affordable manner in terms of synthetic effort, amount of material, and cost. As will be presented, the most common dendrons used for biomedical applications are polyamide, polyester, carbosilane, polyether, and glycol-type, which are bonded to biological active molecules (BAMs), or molecular nanoplatforms (MPs) by hydrolysable bonds. Also relevant is the fact that the incorporation of dendrons not larger than third generation (G3) is sufficient to improve essential properties of these molecular systems, such as aqueous solubility, stability, and cellular internalization, among others. The type of dendron and its location on the BAMs or MPs, similar to placing a Lego piece on a model, will be decisive for obtaining the desired properties.
Collapse
Affiliation(s)
- Carlos Cruz-Hernández
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Luis José López-Méndez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Patricia Guadarrama
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| |
Collapse
|
8
|
Fernandes G, Pandey A, Kulkarni S, Mutalik SP, Nikam AN, Seetharam RN, Kulkarni SS, Mutalik S. Supramolecular dendrimers based novel platforms for effective oral delivery of therapeutic moieties. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
|
10
|
Khan A, Dias F, Neekhra S, Singh B, Srivastava R. Designing and Immunomodulating Multiresponsive Nanomaterial for Cancer Theranostics. Front Chem 2021; 8:631351. [PMID: 33585406 PMCID: PMC7878384 DOI: 10.3389/fchem.2020.631351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/22/2020] [Indexed: 01/14/2023] Open
Abstract
Cancer has been widely investigated yet limited in its manifestation. Cancer treatment holds innovative and futuristic strategies considering high disease heterogeneity. Chemotherapy, radiotherapy and surgery are the most explored pillars; however optimal therapeutic window and patient compliance recruit constraints. Recently evolved immunotherapy demonstrates a vital role of the host immune system to prevent metastasis recurrence, still undesirable clinical response and autoimmune adverse effects remain unresolved. Overcoming these challenges, tunable biomaterials could effectively control the co-delivery of anticancer drugs and immunomodulators. Current status demands a potentially new approach for minimally invasive, synergistic, and combinatorial nano-biomaterial assisted targeted immune-based treatment including therapeutics, diagnosis and imaging. This review discusses the latest findings of engineering biomaterial with immunomodulating properties and implementing novel developments in designing versatile nanosystems for cancer theranostics. We explore the functionalization of nanoparticle for delivering antitumor therapeutic and diagnostic agents promoting immune response. Through understanding the efficacy of delivery system, we have enlightened the applicability of nanomaterials as immunomodulatory nanomedicine further advancing to preclinical and clinical trials. Future and present ongoing improvements in engineering biomaterial could result in generating better insight to deal with cancer through easily accessible immunological interventions.
Collapse
Affiliation(s)
- Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Faith Dias
- Department of Chemical Engineering, Thadomal Shahani Engineering College, Mumbai, India
| | - Suditi Neekhra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Barkha Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
- Centre for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
11
|
Javan Nikkhah S, Thompson D. Molecular Modelling Guided Modulation of Molecular Shape and Charge for Design of Smart Self-Assembled Polymeric Drug Transporters. Pharmaceutics 2021; 13:141. [PMID: 33499130 PMCID: PMC7912381 DOI: 10.3390/pharmaceutics13020141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Nanomedicine employs molecular materials for prevention and treatment of disease. Recently, smart nanoparticle (NP)-based drug delivery systems were developed for the advanced transport of drug molecules. Rationally engineered organic and inorganic NP platforms hold the promise of improving drug targeting, solubility, prolonged circulation, and tissue penetration. However, despite great progress in the synthesis of NP building blocks, more interdisciplinary research is needed to understand their self-assembly and optimize their performance as smart nanocarriers. Multi-scale modeling and simulations provide a valuable ally to experiment by mapping the potential energy landscape of self-assembly, translocation, and delivery of smart drug-loaded NPs. Here, we highlight key recent advances to illustrate the concepts, methods, and applications of smart polymer-based NP drug delivery. We summarize the key design principles emerging for advanced multifunctional polymer topologies, illustrating how the unusual architecture and chemistry of dendritic polymers, self-assembling polyelectrolytes and cyclic polymers can provide exceptional drug delivery platforms. We provide a roadmap outlining the opportunities and challenges for the effective use of predictive multiscale molecular modeling techniques to accelerate the development of smart polymer-based drug delivery systems.
Collapse
Affiliation(s)
- Sousa Javan Nikkhah
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland;
| | | |
Collapse
|
12
|
Rahim S, Perveen S, Ahmed S, Shah MR, Malik MI. Enhancement in the antibacterial activity of cephalexin by its delivery through star-shaped poly(ε-caprolactone)-block-poly(ethylene oxide) coated silver nanoparticles. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201097. [PMID: 33204468 PMCID: PMC7657908 DOI: 10.1098/rsos.201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The antibacterial activity of silver nanoparticles (AgNPs) stabilized with a four-armed star-shaped poly(ε-caprolactone)-block-poly(ethylene oxide) copolymer [St-P(CL-b-EO)] and its application as a drug delivery vehicle for cephalexin (Cp) was evaluated against pathogenic Staphylococcus aureus. The prepared AgNPs were characterized by ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, zeta sizer and atomic force microscopy (AFM). The antibacterial efficiency of Cp is enhanced several-fold by its delivery through complexation with St-P(CL-b-EO)-AgNPs, monitored by microplate assay and biofilm destruction studies. Finally, the visual destruction of bacterial cells and its biofilms by employing Cp and its conjugates at their minimum inhibitory concentration (MIC50) and minimum biofilm inhibitory concentration (MBIC50), respectively, is observed by topographic imaging by AFM. Enhanced antibacterial activity of St-P(CL-b-EO)-AgNPs loaded Cp is attributed to penetrative nature of the drug cargo St-P(CL-b-EO)-AgNPs towards the bacterial cell wall.
Collapse
Affiliation(s)
| | | | | | | | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
13
|
Yousefi M, Narmani A, Jafari SM. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv Colloid Interface Sci 2020; 278:102125. [PMID: 32109595 DOI: 10.1016/j.cis.2020.102125] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 02/09/2023]
Abstract
The genesis of dendrimers can be considered as a revolution in nano-scaled bioactive delivery systems. These structures possess a unique potential in encapsulating/entrapping bioactive ingredients due to their tree-like nature. Therefore, they could swiftly obtain a valuable statue in nutraceutical, pharmaceutical and medical sciences. Phytochemicals, as a large proportion of bioactives, have been studied and used by scholars in several fields of pharmacology, medical, food, and cosmetic for many years. But, the solubility, stability, and bioavailability issues have always been recognized as limiting factors in their application. Therefore, the main aim of this study is representing the use of dendrimers as novel nanocarriers for phytochemical bioactive compounds to deal with these problems. Hence, after a brief review of phytochemical ingredients, the text is commenced with a detailed explanation of dendrimers, including definitions, types, generations, synthesizing methods, and safety issues; then is continued with demonstration of their applications in encapsulation of phytochemical bioactive compounds and their active/passive delivery by dendrimers. Dendrimers provide a vast and appropriate surface to entrap the targeted phytochemical bioactive ingredients. Several parameters can affect the yield of nanoencapsulation by dendrimers, including their generation, type of end groups, surface charge, core structure, pH, and ambient factors. Another important issue of dendrimers is related to their toxicity. Cationic dendrimers, particularly PAMAM can be toxic to body cells through attaching to the cell membranes and disturbing their functions. However, a number of solutions have been suggested to decrease their toxicity.
Collapse
|
14
|
Mandal AK. Dendrimers in targeted drug delivery applications: a review of diseases and cancer. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1713780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ardhendu Kumar Mandal
- Central Instrumentation Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, India
| |
Collapse
|
15
|
Fatemi SM, Fatemi SJ, Abbasi Z. PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-019-03076-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
16
|
Santos A, Veiga F, Figueiras A. Dendrimers as Pharmaceutical Excipients: Synthesis, Properties, Toxicity and Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E65. [PMID: 31877717 PMCID: PMC6981751 DOI: 10.3390/ma13010065] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
The European Medicines Agency (EMA) and the Current Good Manufacturing Practices (cGMP) in the United States of America, define excipient as the constituents of the pharmaceutical form other than the active ingredient, i.e., any component that is intended to furnish pharmacological activity. Although dendrimers do not have a pharmacopoeia monograph and, therefore, cannot be recognized as a pharmaceutical excipient, these nanostructures have received enormous attention from researchers. Due to their unique properties, like the nanoscale uniform size, a high degree of branching, polyvalency, aqueous solubility, internal cavities, and biocompatibility, dendrimers are ideal as active excipients, enhancing the solubility of poorly water-soluble drugs. The fact that the dendrimer's properties are controllable during their synthesis render them promising agents for drug-delivery applications in several pharmaceutical formulations. Additionally, dendrimers can be used for reducing the drug toxicity and for the enhancement of the drug efficacy. This review aims to discuss the properties that turn dendrimers into pharmaceutical excipients and their potential applications in the pharmaceutical and biomedical fields.
Collapse
Affiliation(s)
- Ana Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Ana Figueiras
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal; (A.S.); (F.V.)
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
17
|
Bidram E, Esmaeili Y, Ranji-Burachaloo H, Al-Zaubai N, Zarrabi A, Stewart A, Dunstan DE. A concise review on cancer treatment methods and delivery systems. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101350] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
18
|
Prajapati SK, Jain A, Jain A, Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur Polym J 2019; 120:109191. [DOI: 10.1016/j.eurpolymj.2019.08.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
|
20
|
Mishra V, Yadav N, Saraogi GK, Tambuwala MM, Giri N. Dendrimer Based Nanoarchitectures in Diabetes Management: An Overview. Curr Pharm Des 2019; 25:2569-2583. [PMID: 31333099 DOI: 10.2174/1381612825666190716125332] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/13/2023]
Abstract
Diabetes has turned out to be one of the biggest worldwide health and economic burdens, with its expanded predominance and high complexity proportion. The quantity of diabetic patients is expanding enormously around the world. Several reports have demonstrated the sharp increment in the sufferers. Stable and acceptable blood glucose control is fundamental to diminish diabetes-related complications. Consequently, ceaseless endeavors have been made in antidiabetic drugs, treatment strategies, and nanotechnology based products to accomplish better diabetes control. The nanocarriers pertaining hypoglycaemics provide improved diabetes management with minimum risk of associated side effects. Dendrimers have caught an incredible attention in the field of drug delivery and personalized medicines. Dendrimers are three-dimensional well-defined homogenous nanosized structures consisting tree-like branches. The present review highlights the different aspects of dendrimers including fabrication, surface engineering, toxicological profile as well as delivery of antidiabetic drugs for the effective cure of diabetes.
Collapse
Affiliation(s)
- Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Nishika Yadav
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav K Saraogi
- School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur, India
| | - Murtaza M Tambuwala
- SAAD Centre for Pharmacy and Diabetes, School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, BT52 1SA, Northern Ireland, United Kingdom
| | - Namita Giri
- School of Pharmacy, Ferris State University, Big Rapids, Michigan MI4930, MA, United States
| |
Collapse
|
21
|
Tambe P, Kumar P, Paknikar KM, Gajbhiye V. Smart triblock dendritic unimolecular micelles as pioneering nanomaterials: Advancement pertaining to architecture and biomedical applications. J Control Release 2019; 299:64-89. [PMID: 30797002 DOI: 10.1016/j.jconrel.2019.02.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 11/08/2022]
|
22
|
Shiri S, Abbasi N, Alizadeh K, Karimi E. Novel and green synthesis of a nanopolymer and its use as a drug delivery system of silibinin and silymarin extracts in the olfactory ensheathing cells of rats in normal and high-glucose conditions. RSC Adv 2019; 9:38912-38927. [PMID: 35540667 PMCID: PMC9075964 DOI: 10.1039/c9ra05608d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/27/2019] [Indexed: 01/03/2023] Open
Abstract
Drug delivery systems have been of interest to researchers. The effects of synthesized nano-polymers as silibinin and silymarin extract drug delivery systems on olfactory ensheathing cells under normal and high-glucose conditions were studied. The structure of the nanopolymer was characterized by IR, HNMR, GPC, DLS, and AFM. The toxicity was evaluated by an MTT assay. The production of ROS and the generation of NO were evaluated by a probe of fluorescein diacetate and Griess methods, respectively. The expressions of the protein levels of ILK, VEGF, BDNF, and NGF were investigated by western blotting. The polymer size was between 50 and 150 nm. The loading capacities for silibinin and silymarin were 68.5% and 56.4%, respectively, and the drug release for them was estimated at 54.1% and 50.8%, respectively. In high-glucose conditions, the cells were protected (EC50 = 4.88 ± 0.5 μM) by silibinin and nanopolymer in low concentrations by reducing the amount of ROS and NO, maintaining ILK, reducing VEGF and increasing NGF and BDNF. Incubation with silibinin and nanopolymer at high concentrations increased cell death with LC50 = 57.36 ± 2.5 and 43.18 ± 1.8 μM, respectively, in high-glucose states. Thus, the cells were protected by silibinin and nanopolymer in protective concentrations by reducing the amount of ROS and NO, maintaining ILK, reducing VEGF, and increasing BDNF and NGF. The mentioned mechanisms were totally reversed at high concentrations. A schematic of a new synthesized nanopolymer (CGONP) and its use as a drug delivery system of silibinin and silymarin extract in the olfactory ensheathing cells (OECs) of rats in normal and high-glucose conditions.![]()
Collapse
Affiliation(s)
- Sabah Shiri
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
- Biotechnology and Medicinal Plants Research Center
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center
- Ilam University of Medical Sciences
- Ilam
- Iran
- Department of Pharmacology
| | - Kamal Alizadeh
- Department of Chemistry
- Lorestan University
- Khorramabad
- Iran
| | - Elahe Karimi
- Biotechnology and Medicinal Plants Research Center
- Ilam University of Medical Sciences
- Ilam
- Iran
| |
Collapse
|
23
|
Dzhardimalieva GI, Uflyand IE. Synthetic Methodologies for Chelating Polymer Ligands: Recent Advances and Future Development. ChemistrySelect 2018. [DOI: 10.1002/slct.201802516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of MetallopolymersThe Institute of Problems of Chemical Physics RAS Academician Semenov avenue 1, Chernogolovka, Moscow Region 142432 Russian Federation
| | - Igor E. Uflyand
- Department of ChemistrySouthern Federal University B. Sadovaya str. 105/42, Rostov-on-Don 344006 Russian Federation
| |
Collapse
|
24
|
Theranostics Applications of Nanoparticles in Cancer Immunotherapy. Med Sci (Basel) 2018; 6:medsci6040100. [PMID: 30424010 PMCID: PMC6313674 DOI: 10.3390/medsci6040100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
With the advancement in the mechanism of immune surveillance and immune evasion in cancer cells, cancer immunotherapy shows promising results for treating cancer with established efficacy and less toxicity. As a result of the off-target effect, the approach for delivering vaccines, adjuvants, or antibodies directly to tumor sites is gaining widespread attention. An effective alternative is to utilize nanoengineered particles, functioning as drug-delivery systems or as antigens themselves. This article reviews the practical implementation of nanotechnology in cancer immunotherapy.
Collapse
|
25
|
Vieira Gonzaga R, da Silva Santos S, da Silva JV, Campos Prieto D, Feliciano Savino D, Giarolla J, Igne Ferreira E. Targeting Groups Employed in Selective Dendrons and Dendrimers. Pharmaceutics 2018; 10:E219. [PMID: 30413047 PMCID: PMC6320891 DOI: 10.3390/pharmaceutics10040219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/19/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
The design of compounds with directed action to a defined organ or tissue is a very promising approach, since it can decrease considerably the toxicity of the drug/bioactive compound. For this reason, this kind of strategy has been greatly important in the scientific community. Dendrimers, on the other hand, comprise extremely organized macromolecules with many peripheral functionalities, stepwise controlled synthesis, and defined size. These nanocomposites present several biological applications, demonstrating their efficiency to act in the pharmaceutical field. Considering that, the main purpose of this review was describing the potential of dendrons and dendrimers as drug targeting, applying different targeting groups. This application has been demonstrated through interesting examples from the literature considering the last ten years of publications.
Collapse
Affiliation(s)
- Rodrigo Vieira Gonzaga
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Soraya da Silva Santos
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Joao Vitor da Silva
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | - Diego Campos Prieto
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | | - Jeanine Giarolla
- Faculty of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| | | |
Collapse
|
26
|
Omolo CA, Kalhapure RS, Agrawal N, Jadhav M, Rambharose S, Mocktar C, Govender T. A hybrid of mPEG-b-PCL and G1-PEA dendrimer for enhancing delivery of antibiotics. J Control Release 2018; 290:112-128. [PMID: 30312719 DOI: 10.1016/j.jconrel.2018.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/17/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
|
27
|
Jędrzak A, Grześkowiak BF, Coy E, Wojnarowicz J, Szutkowski K, Jurga S, Jesionowski T, Mrówczyński R. Dendrimer based theranostic nanostructures for combined chemo- and photothermal therapy of liver cancer cells in vitro. Colloids Surf B Biointerfaces 2018; 173:698-708. [PMID: 30384266 DOI: 10.1016/j.colsurfb.2018.10.045] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/09/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
Here we report the synthesis of multifunctional nanocarriers based on PAMAM dendrimers generation (G) 4.0, 5.0 and 6.0 fixed to polydopamine (PDA) coated magnetite nanoparticles (Fe3O4). Synthesized nanoplatforms were characterized by transmission electron microscopy (TEM), the electrokinetic (zeta) potential, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and magnetic resonance imaging (MRI). Further, we show as a proof of concept that nanocarriers functionalized with G 5.0 could be successfully applied in combined chemo- and photothermal therapy (CT-PTT) of the liver cancer cells. The cooperative effect of the modalities mentioned above led to higher mortality of cancer cells when compared to their individual performance. Moreover, the performed in vitro studies revealed that the application of dual therapy triggered the desired cell death mechanism-apoptosis. Furthermore, performed tests using Magnetic Resonance Imaging (MRI) showed that our materials have competitive contrast properties. Overall, the functionality of dendrimers has been extended by merging them with magnetic nanoparticles resulting in multifunctional hybrid nanostructures that are promising smart drug delivery system for cancer therapy.
Collapse
Affiliation(s)
- Artur Jędrzak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland; Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Bartosz F Grześkowiak
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Jacek Wojnarowicz
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, PL-01142 Warsaw, Poland
| | - Kosma Szutkowski
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Stefan Jurga
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Radosław Mrówczyński
- NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Umultowska 85, PL-61614 Poznan, Poland.
| |
Collapse
|
28
|
Nadimi AE, Ebrahimipour SY, Afshar EG, Falahati-Pour SK, Ahmadi Z, Mohammadinejad R, Mohamadi M. Nano-scale drug delivery systems for antiarrhythmic agents. Eur J Med Chem 2018; 157:1153-1163. [PMID: 30189397 DOI: 10.1016/j.ejmech.2018.08.080] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/20/2022]
Abstract
Arrhythmia means the heart is beating too fast, too slow, or with an irregular pattern. Due to the side effects and low bioavailability of many antiarrhythmic drugs, nano-encapsulation has been widely used for their targeted delivery. Lipid nanocapsules, nano liposomes, nano niosomes, solid lipid nanoparticles and polymeric nanoparticles are common nano-carriers used for this purpose. The aim of this article is to summarize some of nano systems used for the specific delivery of antiarrhythmic agents to target tissues. At first, nanotechnology and its applications in drug delivery are described in brief. Then, some information on arrhythmias and antiarrhythmic drugs are provided. Finally, the nano drug delivery systems are explained and examples of their applications in encapsulation of antiarrhythmic drugs are presented.
Collapse
Affiliation(s)
- Ali Esmaeili Nadimi
- Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Dept. of Cardiology, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - S Yousef Ebrahimipour
- Department of Chemistry, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Elham Ghasemipour Afshar
- Department of Microbiology, Faculty of Science, Kerman Branch, Islamic Azad University, Kerman, Iran
| | | | - Zahra Ahmadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mohamadi
- Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
29
|
Fallah F, Zargar M, Yousefi M, Alam AN. Synthesis of the erythromycin-conjugated nanodendrimer and its antibacterial activity. Eur J Pharm Sci 2018; 123:321-326. [PMID: 30053464 DOI: 10.1016/j.ejps.2018.07.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/25/2018] [Accepted: 07/24/2018] [Indexed: 11/16/2022]
Abstract
The development and spread of bacterial resistance to antimicrobial drugs necessitates the need to search for novel and effective antimicrobial agents. In the last few decades, innovative nanomaterials are attracting increasing attention and, among them, dendrimers have shown wide application in the various fields. In the current study, the two generations of an anionic linear- spherical nanodendrimer G1 and G2 were synthetized and compound G2 of nanodendrimer conjugated with erythromycin. The structures of the nanodendrimers were characterized by FTIR spectroscopy, zetasizer, and scanning electron microscopy (SEM). The antibacterial activity of the erythromycin-conjugated nanodendrimer and erythromycin alone were evaluated by the microdilution method against Staphylococcus aureus, S. epidermidis, S. saprophyticus, and Pseudomonas aeruginosa. The size of first and second generation of nanodendrimer, and the erythromycin-conjugated nanodendrimer was 75, 95, and 65.6 nm, respectively. The drug loading percentage of the nanodendrimer conjugates was obtained to be in 35.2%. In our study, the erythromycin-conjugated nanodendrimer showed significantly more bacteriostatic and bactericidal activities against all four studied bacteria than erythromycin alone. Our study's results highlight that the erythromycin-conjugated nanodendrimer is a highly effective agent against Gram positive and negative bacteria. The antibacterial properties of erythromycin combined with the targeting potential of the nanodendrimer can lead to sustained intracellular delivery of therapeutic agent.
Collapse
Affiliation(s)
- Fatemeh Fallah
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Zargar
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
| | - Masoud Yousefi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran; Department of Microbiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Nazari Alam
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
30
|
Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int J Pharm 2018; 548:707-720. [PMID: 30012508 DOI: 10.1016/j.ijpharm.2018.07.030] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Dendrimers are novel polymeric nanoarchitectures characterized by hyper-branched 3D-structure having multiple functional groups on the surface that increases their functionality and make them versatile and biocompatible. Their unique properties like nanoscale uniform size, high degree of branching, polyvalency, water solubility, available internal cavities and convenient synthesis approaches make them promising agent for biological and drug delivery applications. Dendrimers have received an enormous attention from researchers among various nanomaterials. Dendrimers can be used as a carrier for diverse therapeutic agents. They can be used for reducing drug toxicities and enhancement of their efficacies. The present review provide a comprehensive outline of synthesis of dendrimers, interaction of dendrimer with guest molecules, properties, characterization and their potential applications in pharmaceutical and biomedical field.
Collapse
Affiliation(s)
- Atul P Sherje
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India.
| | - Mrunal Jadhav
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Bhushan R Dravyakar
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| | - Darshana Kadam
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400 056, India
| |
Collapse
|
31
|
Gao Z, Chen W, Chen X, Wang D, Yi S. Study on the Isomerization of Maleic Acid to Fumaric Acid without Catalyst. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhuo Gao
- College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Wangmi Chen
- College of Marine and Environmental Sciences; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Xiaoting Chen
- College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| | - Dali Wang
- Tianjin Bohai Chemical Industry Group; Tianjin 300270 China
| | - Shouzhi Yi
- College of Chemical Engineering and Materials Science; Tianjin University of Science and Technology; Tianjin 300457 China
| |
Collapse
|
32
|
The diosgenin prodrug nanoparticles with pH-responsive as a drug delivery system uniquely prevents thrombosis without increased bleeding risk. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:673-684. [DOI: 10.1016/j.nano.2017.12.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 12/19/2022]
|
33
|
Huang D, Wu D. Biodegradable dendrimers for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:713-727. [PMID: 29853143 DOI: 10.1016/j.msec.2018.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/17/2017] [Accepted: 03/03/2018] [Indexed: 01/09/2023]
Abstract
Dendrimers, as a type of artificial polymers with unique structural features, have been extensively explored for their applications in biomedical fields, especially in drug delivery. However, one important concern about the most commonly used dendrimers exists - the nondegradability, which may cause side effects induced by the accumulation of synthetic polymers in cells or tissues. Therefore, biodegradable dendrimers incorporating biodegradability with merits of dendrimers such as well-defined architectures, copious internal cavities and surface functionalities, are much more promising for developing novel nontoxic drug carriers. Herein, we review the recent advances in design and synthesis of biodegradable dendrimers, as well as their applications in fabricating drug delivery systems, with the aim to provide researchers in the related fields a good understanding of biodegradable dendrimers for drug delivery.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350116, China.; Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China..
| |
Collapse
|
34
|
Yi Y, Lin G, Chen S, Liu J, Zhang H, Mi P. Polyester micelles for drug delivery and cancer theranostics: Current achievements, progresses and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 83:218-232. [DOI: 10.1016/j.msec.2017.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/14/2022]
|
35
|
Roointan A, Kianpour S, Memari F, Gandomani M, Gheibi Hayat SM, Mohammadi-Samani S. Poly(lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1405350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Amir Roointan
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Kianpour
- Department of Pharmaceutical Biotechnology, Pharmaceutical Sciences Research Center, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Memari
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Molood Gandomani
- Department of Bioengineering, Biotechnology Research Center, Cyprus international University, Nicosia, Cyprus
| | - Seyed Mohammad Gheibi Hayat
- Student Research Committee, Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
36
|
Rotman SG, Grijpma DW, Richards RG, Moriarty TF, Eglin D, Guillaume O. Drug delivery systems functionalized with bone mineral seeking agents for bone targeted therapeutics. J Control Release 2017; 269:88-99. [PMID: 29127000 DOI: 10.1016/j.jconrel.2017.11.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/06/2017] [Indexed: 01/28/2023]
Abstract
The systemic administration of drugs to treat bone diseases is often associated with poor uptake of the drug in the targeted tissue, potential systemic toxicity and suboptimal efficacy. In order to overcome these limitations, many micro- and nano-sized drug carriers have been developed for the treatment of bone pathologies that exhibit specific affinity for bone. Drug carriers can be functionalized with bone mineral seekers (BMS), creating a targeted drug delivery system (DDS) which is able to bind to bone and release therapeutics directly at the site of interest. This class of advanced DDS is of tremendous interest due to their strong affinity to bone, with great expectation to treat life-threatening bone disorders such as osteomyelitis, osteosarcoma or even osteoporosis. In this review, we first explain the mechanisms behind the affinity of several well-known BMS to bone, and then we present several effective approaches allowing the incorporation BMS into advanced DDS. Finally, we report the therapeutic applications of BMS based DDS under development or already established. Understanding the mechanisms behind the biological activity of recently developed BMS and their integration into advanced therapeutic delivery systems are essential prerequisites for further development of bone-targeting therapies with optimal efficacy.
Collapse
Affiliation(s)
- S G Rotman
- AO Research Institute Davos, Switzerland; MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - D W Grijpma
- MIRA Institute for Biomedical Technology and Technical Medicine, Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | | | | | - D Eglin
- AO Research Institute Davos, Switzerland
| | | |
Collapse
|
37
|
Barzegar Behrooz A, Nabavizadeh F, Adiban J, Shafiee Ardestani M, Vahabpour R, Aghasadeghi MR, Sohanaki H. Smart bomb AS1411 aptamer-functionalized/PAMAM dendrimer nanocarriers for targeted drug delivery in the treatment of gastric cancer. Clin Exp Pharmacol Physiol 2017; 44:41-51. [PMID: 27626786 DOI: 10.1111/1440-1681.12670] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/29/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
Abstract
Chemotherapy, a conventional method assessed in recent oncology studies, poses numerous problems in the clinical environment. To overcome the problems inherent in chemotherapy, an intelligent drug delivery system has come to the forefront of cancer therapeutics. In this study, we designed a dendrimer-based pharmaceutical system together with a single-stranded AS1411 aptamer (APTAS1411 ) as a therapeutic strategy. The polyamidoamine (PAMAM)-polyethylene glycol (PEG) complex was then conjugated with the AS1411 aptamer and confirmed by atomic-force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) .In this study, we show that the conjugated PAMAM-PEG-APTAS1411 complex dramatically increased PAMAM-PEG-5-FU uptake by MKN45 gastric cancer cells. We also demonstrated both the stability of the nanoparticle-5-FU-APTAS1411 complex, by thin layer chromatography (TLC), and an increase in 5-fluorouracil (5-FU) accumulation in the vicinity of cancerous tumors. This smart drug delivery system is capable of effectively transferring 5-FU to MKN45 gastric cancer cells in consistent and without toxic effects.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Adiban
- Biomedical Engineering and Medical physics, Department of Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rouhollah Vahabpour
- Medical Lab Technology Department, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamid Sohanaki
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Adam V, Vaculovicova M. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials. Electrophoresis 2017; 38:2389-2404. [DOI: 10.1002/elps.201700097] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/02/2017] [Accepted: 06/22/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Vojtech Adam
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry; Mendel University in Brno; Brno Czech Republic
- Central European Institute of Technology; Brno University of Technology; Brno Czech Republic
| |
Collapse
|
39
|
Lin JT, Liu ZK, Zhu QL, Rong XH, Liang CL, Wang J, Ma D, Sun J, Wang GH. Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles. Colloids Surf B Biointerfaces 2017; 155:41-50. [DOI: 10.1016/j.colsurfb.2017.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 10/19/2022]
|
40
|
Lancelot A, González-Pastor R, Concellón A, Sierra T, Martín-Duque P, Serrano JL. DNA Transfection to Mesenchymal Stem Cells Using a Novel Type of Pseudodendrimer Based on 2,2-Bis(hydroxymethyl)propionic Acid. Bioconjug Chem 2017; 28:1135-1150. [PMID: 28256825 DOI: 10.1021/acs.bioconjchem.7b00037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the search for effective vehicles to carry genetic material into cells, we present here new pseudodendrimers that consist of a hyperbranched polyester core surrounded by amino-terminated 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) dendrons. The pseudodendrimers are readily synthesized from commercial hyperbranched bis-MPA polyesters of the second, third, and fourth generations and third-generation bis-MPA dendrons, bearing eight peripheral glycine moieties, coupled by the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC). This approach provides globular macromolecular structures bearing 128, 256, and 512 terminal amino groups, and these can complex pDNA. The toxicity of the three pseudodendrimers was studied on two cell lines, mesenchymal stem cells, and HeLa, and it was demonstrated that these compounds do not affect negatively cell viability up to 72 h. The complexation with DNA was investigated in terms of N-to-P ratio and dendriplex stability. The three generations were found to promote internalizing of pDNA into mesenchymal stem cells (MSCs), and their transfection capacity was compared with two nonviral commercial transfection agents, Lipofectamine and TransIT-X2. The highest generations were able to transfect these cells at levels comparable to both commercial reagents.
Collapse
Affiliation(s)
- Alexandre Lancelot
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Nanociencia de Aragón, Universidad de Zaragoza , Zaragoza 50009, Spain
| | | | - Alberto Concellón
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC , Zaragoza 50009, Spain
| | - Teresa Sierra
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC , Zaragoza 50009, Spain
| | - Pilar Martín-Duque
- Centro de Investigación Biomédica de Aragón, IIS Aragón, Fundación Araid, Universidad Francisco de Vitoria , Madrid 28223, Spain
| | - José L Serrano
- Departamento de Quı́mica Orgánica, Facultad de Ciencias, Instituto de Nanociencia de Aragón, Universidad de Zaragoza , Zaragoza 50009, Spain
| |
Collapse
|
41
|
Gârea SA, Voicu AI, Iovu H. Clay–Polymer Nanocomposites for Controlled Drug Release. CLAY-POLYMER NANOCOMPOSITES 2017:475-509. [DOI: 10.1016/b978-0-323-46153-5.00014-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
42
|
da Silva Santos S, Igne Ferreira E, Giarolla J. Dendrimer Prodrugs. Molecules 2016; 21:E686. [PMID: 27258239 PMCID: PMC6274429 DOI: 10.3390/molecules21060686] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 11/19/2022] Open
Abstract
The main objective of this review is to describe the importance of dendrimer prodrugs in the design of new drugs, presenting numerous applications of these nanocomposites in the pharmaceutical field. Therefore, the use of dendrimer prodrugs as carrier for drug delivery, to improve pharmacokinetic properties of prototype, to promote drug sustained-release, to increase selectivity and, consequently, to decrease toxicity, are just some examples of topics that have been extensively reported in the literature, especially in the last decade. The examples discussed here give a panel of the growing interest dendrimer prodrugs have been evoking in the scientific community.
Collapse
Affiliation(s)
- Soraya da Silva Santos
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| | - Elizabeth Igne Ferreira
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| | - Jeanine Giarolla
- Laboratory of Design and Synthesis of Chemotherapeutics Potentially Active in Neglected Diseases (LAPEN), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo-USP, Avenue Professor Lineu Prestes, 580-Building 13, São Paulo SP, 05508-900, Brazil.
| |
Collapse
|
43
|
Polymeric microcontainers improve oral bioavailability of furosemide. Int J Pharm 2016; 504:98-109. [DOI: 10.1016/j.ijpharm.2016.03.050] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/25/2016] [Accepted: 03/26/2016] [Indexed: 12/18/2022]
|
44
|
Ahmed S, Vepuri SB, Kalhapure RS, Govender T. Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research. Biomater Sci 2016; 4:1032-50. [PMID: 27100841 DOI: 10.1039/c6bm00090h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Dendrimers have emerged as novel and efficient materials that can be used as therapeutic agents/drugs or as drug delivery carriers to enhance therapeutic outcomes. Molecular dendrimer interactions are central to their applications and realising their potential. The molecular interactions of dendrimers with drugs or other materials in drug delivery systems or drug conjugates have been extensively reported in the literature. However, despite the growing application of dendrimers as biologically active materials, research focusing on the mechanistic analysis of dendrimer interactions with therapeutic biological targets is currently lacking in the literature. This comprehensive review on dendrimers over the last 15 years therefore attempts to identify the reasons behind the apparent lack of dendrimer-receptor research and proposes approaches to address this issue. The structure, hierarchy and applications of dendrimers are briefly highlighted, followed by a review of their various applications, specifically as biologically active materials, with a focus on their interactions at the target site. It concludes with a technical guide to assist researchers on how to employ various molecular modelling and computational approaches for research on dendrimer interactions with biological targets at a molecular level. This review highlights the impact of a mechanistic analysis of dendrimer interactions on a molecular level, serves to guide and optimise their discovery as medicinal agents, and hopes to stimulate multidisciplinary research between scientific, experimental and molecular modelling research teams.
Collapse
Affiliation(s)
- Shaimaa Ahmed
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, 4000, South Africa.
| | | | | | | |
Collapse
|
45
|
Ricapito NG, Ghobril C, Zhang H, Grinstaff MW, Putnam D. Synthetic Biomaterials from Metabolically Derived Synthons. Chem Rev 2016; 116:2664-704. [PMID: 26821863 PMCID: PMC5810137 DOI: 10.1021/acs.chemrev.5b00465] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utility of metabolic synthons as the building blocks for new biomaterials is based on the early application and success of hydroxy acid based polyesters as degradable sutures and controlled drug delivery matrices. The sheer number of potential monomers derived from the metabolome (e.g., lactic acid, dihydroxyacetone, glycerol, fumarate) gives rise to almost limitless biomaterial structural possibilities, functionality, and performance characteristics, as well as opportunities for the synthesis of new polymers. This review describes recent advances in new chemistries, as well as the inventive use of traditional chemistries, toward the design and synthesis of new polymers. Specific polymeric biomaterials can be prepared for use in varied medical applications (e.g., drug delivery, tissue engineering, wound repair, etc.) through judicious selection of the monomer and backbone linkage.
Collapse
Affiliation(s)
- Nicole G. Ricapito
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Cynthia Ghobril
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Heng Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W. Grinstaff
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - David Putnam
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:271-99. [PMID: 26314803 DOI: 10.1002/wnan.1364] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 12/22/2022]
Abstract
Polymeric nanoparticles (NPs) are one of the most studied organic strategies for nanomedicine. Intense interest lies in the potential of polymeric NPs to revolutionize modern medicine. To determine the ideal nanosystem for more effective and distinctly targeted delivery of therapeutic applications, particle size, morphology, material choice, and processing techniques are all research areas of interest. Utilizations of polymeric NPs include drug delivery techniques such as conjugation and entrapment of drugs, prodrugs, stimuli-responsive systems, imaging modalities, and theranostics. Cancer, neurodegenerative disorders, and cardiovascular diseases are fields impacted by NP technologies that push scientific boundaries to the leading edge of transformative advances for nanomedicine.
Collapse
Affiliation(s)
- Brittany L Banik
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Pouria Fattahi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Justin L Brown
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
47
|
Kumar S, Achazi K, Böttcher C, Licha K, Haag R, Sharma SK. Encapsulation and cellular internalization of cyanine dye using amphiphilic dendronized polymers. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
48
|
Schmidt C, Storsberg J. Nanomaterials-Tools, Technology and Methodology of Nanotechnology Based Biomedical Systems for Diagnostics and Therapy. Biomedicines 2015; 3:203-223. [PMID: 28536408 PMCID: PMC5344240 DOI: 10.3390/biomedicines3030203] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/03/2015] [Accepted: 07/09/2015] [Indexed: 12/27/2022] Open
Abstract
Nanomedicine helps to fight diseases at the cellular and molecular level by utilizing unique properties of quasi-atomic particles at a size scale ranging from 1 to 100 nm. Nanoparticles are used in therapeutic and diagnostic approaches, referred to as theranostics. The aim of this review is to illustrate the application of general principles of nanotechnology to select examples of life sciences, molecular medicine and bio-assays. Critical aspects relating to those examples are discussed.
Collapse
Affiliation(s)
- Christian Schmidt
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| | - Joachim Storsberg
- Fraunhofer-Institute Applied Polymer Research (IAP), Geiselbergstrasse 69, Potsdam D-14476, Germany.
| |
Collapse
|
49
|
Das AK, Hsiao PY. Charged dendrimers under the action of AC electric fields: breathing characteristics of molecular size, polarizations, and ion distributions. J Chem Phys 2015; 142:084902. [PMID: 25725752 DOI: 10.1063/1.4908563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Langevin dynamics simulations are performed to study the response of charged dendrimers in alternating current electric fields in 3:1 salt solutions. Time evolutions of molecular size show breathing characteristics which take saw-tooth-like patterns in square-wave electric fields and undulated sine-function ones in sine-wave fields. Detailed study reveals how the dendrimer and condensed ions oscillate in the electric fields, which result in polarization of the molecule. To effect a significant deformation of the dendrimer, the applied field amplitude must be larger than some critical strength Ecrit and the field frequency smaller than a threshold fcrit. The response behavior is characterized by two relaxation times in square-wave fields, both of which decrease linearly with the strong field strength larger than Ecrit. In sine-wave fields, the molecular size exhibits interesting hysteretic behavior in plotting the curves with the field variation. A Maxwell-Wagner type polarization theory is derived and proved by simulations, which connects fcrit with the strength of the applied electric field.
Collapse
Affiliation(s)
- Ashok K Das
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Pai-Yi Hsiao
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
50
|
Twibanire JDK, Paul NK, Grindley TB. Synthesis of novel types of polyester glycodendrimers as potential inhibitors of urinary tract infections. NEW J CHEM 2015. [DOI: 10.1039/c4nj00992d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Syntheses of highly mannosylated polyester dendrimers with 2, 4, 8, and 16 α-d-mannopyranose residues on their peripheries connected by different linker arms are presented.
Collapse
Affiliation(s)
| | - Nawal K. Paul
- Department of Chemistry
- Dalhousie University
- Halifax
- Canada
| | | |
Collapse
|