1
|
Röhrl M, Ködel JF, Timmins RL, Callsen C, Aksit M, Fink MF, Seibt S, Weidinger A, Battagliarin G, Ruckdäschel H, Schobert R, Breu J, Biersack B. New Functional Polymer Materials via Click Chemistry-Based Modification of Cellulose Acetate. ACS OMEGA 2023; 8:9889-9895. [PMID: 36969451 PMCID: PMC10034841 DOI: 10.1021/acsomega.2c06811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Cellulose acetate (CA) was partially acrylated, and the resulting cellulose acetate acrylate (acryl-substitution degree of 0.2) underwent quantitative thio-Michael click reactions with various thiols. A toolbox of functional CA polymers was obtained in this way, and their properties were studied. The modification with fatty alkyl thiols led to hydrophobic materials with large water drop contact angles. Octadecylthio-, butoxycarbonylpropylthio-, and furanylthio-modifications formed highly transparent materials. The new derivative CAASFur disintegrated completely under industrial composting conditions. Films of modified CA polymers were cast and investigated in terms of barrier properties. The nanocomposite of CAAS18 compounded with a synthetic layered silicate (hectorite) of a large aspect ratio showed permeabilities as low as 0.09 g mm m-2 day-1 for water vapor and 0.16 cm3 mm m-2 day-1 atm-1 for oxygen. This portfolio of functional CA polymers opens the door to new applications.
Collapse
Affiliation(s)
- Maximilian Röhrl
- Inorganic
Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Justus F. Ködel
- Fachgruppe
Chemie, Wirtschaftswissenschaftliches und
Naturwissenschaftlich-Technologisches Gymnasium Bayreuth, Am Sportpark 1, 95448 Bayreuth, Germany
| | - Renee L. Timmins
- Inorganic
Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Christoph Callsen
- Department
of Polymer Engineering, Faculty of Engineering Science, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Merve Aksit
- Department
of Polymer Engineering, Faculty of Engineering Science, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Michael F. Fink
- Chair
of Electrochemical Process Engineering, Faculty of Engineering Science, University of Bayreuth, Universitätsstrasse 30, 95447 Bayreuth, Germany
| | - Sebastian Seibt
- Linseis
Messgeräte GmbH, Vielitzerstrasse 43, 95100 Selb, Germany
| | - Andy Weidinger
- Fachgruppe
Chemie, Wirtschaftswissenschaftliches und
Naturwissenschaftlich-Technologisches Gymnasium Bayreuth, Am Sportpark 1, 95448 Bayreuth, Germany
| | - Glauco Battagliarin
- Biopolymers
and Biodegradability Research, BASF, Carl-Bosch-Str. 38, 67056 Ludwigshafen am Rhein, Germany
| | - Holger Ruckdäschel
- Department
of Polymer Engineering, Faculty of Engineering Science, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Rainer Schobert
- Organic
Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Josef Breu
- Inorganic
Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| | - Bernhard Biersack
- Organic
Chemistry 1, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|
2
|
Hameed TA, Mohamed F, Abd-El-Messieh SL, Ward A. Methylammonium lead iodide/poly(methyl methacrylate) nanocomposite films for photocatalytic applications. MATERIALS CHEMISTRY AND PHYSICS 2023; 293:126811. [DOI: 10.1016/j.matchemphys.2022.126811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
3
|
Formulation Characterization and Pharmacokinetic Evaluation of Amorphous Solid Dispersions of Dasatinib. Pharmaceutics 2022; 14:pharmaceutics14112450. [PMID: 36432641 PMCID: PMC9698804 DOI: 10.3390/pharmaceutics14112450] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to improve the physicochemical properties and oral bioavailability of dasatinib (DST) by the amorphous solid dispersion (ASD) approach using cellulose acetate butyrate (CAB) as a carrier. Various formulations of ASD (DST:CAB 1:1 to 1:5) were prepared by the solvent evaporation method. ASDs were characterized for physicochemical attributes, stability and pharmacokinetics. Scanning electron microscopy, Fourier transformed infrared, X-ray powder diffraction, and differential scanning calorimetry confirmed the transformation of the crystalline drug into amorphous phase. ASD formation resulted in a 3.7−4.9 fold increase in dissolution compared to DST or physical mixture. The ASDs formulation exhibited relative stability against transformation from the unstable amorphous phase to a stable crystalline phase that was indicated by spectral and X-ray powder diffraction data, and insignificant (p > 0.05) decrease in dissolution. Tmax, Cmax and AUC0-∞ of ASD were 4.3-fold faster and 2.0 and 1.5 fold higher than the corresponding physical mixture. In conclusion, the ASD of DST significantly improved dissolution and oral bioavailability which may be translated into a reduction in dose and adverse events.
Collapse
|
4
|
Muhammed MI, Yahia IS, Farid AS. Synthesis and characterization
g‐C
3
N
4
‐doped
PMMA
polymeric nanocomposites films for electronic and optoelectronic applications. J Appl Polym Sci 2022. [DOI: 10.1002/app.53064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mervat I Muhammed
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Metallurgical Lab. 1., Department of Physics, Faculty of Education Ain Shams University Cairo Egypt
| | - Ibrahim S Yahia
- Laboratory of Nano‐Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science King Khalid University Abha Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS) King Khalid University Abha Saudi Arabia
- Semiconductor Lab., Department of Physics, Faculty of Education Ain Shams University Cairo Egypt
| | - Abir S Farid
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Metallurgical Lab. 1., Department of Physics, Faculty of Education Ain Shams University Cairo Egypt
| |
Collapse
|
5
|
Li J, Wang X, Liang D, Xu N, Zhu B, Li W, Yao P, Jiang Y, Min X, Huang Z, Zhu S, Fan S, Zhu J. A tandem radiative/evaporative cooler for weather-insensitive and high-performance daytime passive cooling. SCIENCE ADVANCES 2022; 8:eabq0411. [PMID: 35960798 PMCID: PMC9374334 DOI: 10.1126/sciadv.abq0411] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 05/27/2023]
Abstract
Radiative cooling and evaporative cooling with low carbon footprint are regarded as promising passive cooling strategies. However, the intrinsic limits of continuous water supply with complex systems for evaporative cooling, and restricted cooling power as well as the strict requirement of weather conditions for radiative cooling, hinder the scale of their practical applications. Here, we propose a tandem passive cooler composed of bilayer polymer that enables dual-functional passive cooling of radiation and evaporation. Specifically, the high reflectivity to sunlight and mid-infrared emissivity of this polymer film allows excellent radiative cooling performance, and its good atmospheric water harvesting property of underlayer ensures self-supply of water and high evaporative cooling power. Consequently, this tandem passive cooler overcomes the fundamental difficulties of radiative cooling and evaporative cooling and shows the applicability under various conditions of weather/climate. It is expected that this design can expand the practical application domain of passive cooling.
Collapse
Affiliation(s)
- Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Xueyang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Dong Liang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Wei Li
- GPL Photonics Lab, State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, P.R. China
| | - Pengcheng Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Xinzhe Min
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Zhengzong Huang
- School of Energy Science and Engineering, Central South University, Changsha 410083, P.R. China
| | - Shining Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| | - Shanhui Fan
- Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
6
|
Athapattu US, Rathnayaka C, Vaidyanathan S, Gamage SST, Choi J, Riahipour R, Manoharan A, Hall AR, Park S, Soper SA. Tailoring Thermoplastic In-Plane Nanopore Size by Thermal Fusion Bonding for the Analysis of Single Molecules. ACS Sens 2021; 6:3133-3143. [PMID: 34406743 PMCID: PMC8482307 DOI: 10.1021/acssensors.1c01359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a simple method for tailoring the size of in-plane nanopores fabricated in thermoplastics for single-molecule sensing. The in-plane pores were fabricated via nanoimprint lithography (NIL) from resin stamps, which were generated from Si masters. We could reduce the size of the in-plane nanopores from 30 to ∼10 nm during the thermal fusion bonding (TFB) step, which places a cover plate over the imprinted polymer substrate under a controlled pressure and temperature to form the relevant nanofluidic devices. Increased pressures during TFB caused the cross-sectional area of the in-plane pore to be reduced. The in-plane nanopores prepared with different TFB pressures were utilized to detect single-λ-DNA molecules via resistive pulse sensing, which showed a higher current amplitude in devices bonded at higher pressures. Using this method, we also show the ability to tune the pore size to detect single-stranded (ss) RNA molecules and single ribonucleotide adenosine monophosphate (rAMP). However, due to the small size of the pores required for detection of the ssRNA and rAMPs, the surface charge arising from carboxylate groups generated during O2 plasma oxidation of the surfaces of the nanopores to make them wettable had to be reduced to allow translocation of coions. This was accomplished using EDC/NHS coupling chemistry and ethanolamine. This simple modification chemistry increased the event frequency from ∼1 s-1 to >136 s-1 for an ssRNA concentration of 100 nM.
Collapse
Affiliation(s)
- Uditha S Athapattu
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Chathurika Rathnayaka
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Swarnagowri Vaidyanathan
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Sachindra S T Gamage
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Junseo Choi
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Ramin Riahipour
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Anishkumar Manoharan
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Adam R Hall
- Wake Forest School of Medicine, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences and Comprehensive Cancer Center, Winston-Salem, North Carolina 27101, United States
| | - Sunggook Park
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Mechanical & Industrial Engineering Department, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Steven A Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66045, United States
- Center of BioModular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66045, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66045, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66045, United States
- KU Cancer Center, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| |
Collapse
|
7
|
Kwiczak-YİĞİtbaŞi J. Catalytic activity of novel thermoplastic/cellulose-Au nanocomposites prepared by cryomilling. Turk J Chem 2021; 44:1515-1527. [PMID: 33488248 PMCID: PMC7763122 DOI: 10.3906/kim-2005-53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 11/03/2022] Open
Abstract
Due to environmental concerns, increasing attention has been focused on the application and preparation of biobased polymers and their blends. In this study, cellulose, the most spread biopolymer on Earth, was used in the preparation of novel cotton/polypropylene-Au and cotton/polyethylene-Au nanocomposites via a green mechanochemical approach. First, mechanoradicals were generated by ball milling of the cotton and thermoplastics under cryo conditions, and then, these radicals were used in the reduction of Au ions to Au nanoparticles (Au NPs). Nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The application of mechanochemistry in obtaining the cotton/thermoplastic blends allowed homogenous and fine blending of the samples and in addition, excluded the usage of toxic solvents. Since Au NPs exhibit a wide range of applications, e.g., in catalysis, cotton/thermoplastic-Au nanocomposites were used to catalyze the reduction reaction of 4-nitrophenol to
4-aminophenol, followed by UV-Vis spectroscopy. Finally, the hydrophobicity of the nanocomposites was alternated by tuning the blend composition. In the prepared nanocomposites, cotton and thermoplastics acted as very good supporting matrices for the Au NPs and provided satisfactory access to the NPs.
Collapse
|
8
|
Svoboda L, Licciardello N, Dvorský R, Bednář J, Henych J, Cuniberti G. Design and Performance of Novel Self-Cleaning g-C 3N 4/PMMA/PUR Membranes. Polymers (Basel) 2020; 12:E850. [PMID: 32272693 PMCID: PMC7240415 DOI: 10.3390/polym12040850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
In the majority of photocatalytic applications, the photocatalyst is dispersed as a suspension of nanoparticles. The suspension provides a higher surface for the photocatalytic reaction in respect to immobilized photocatalysts. However, this implies that recovery of the particles by filtration or centrifugation is needed to collect and regenerate the photocatalyst. This complicates the regeneration process and, at the same time, leads to material loss and potential toxicity. In this work, a new nanofibrous membrane, g-C3N4/PMMA/PUR, was prepared by the fixation of exfoliated g-C3N4 to polyurethane nanofibers using thin layers of poly(methyl methacrylate) (PMMA). The optimal amount of PMMA was determined by measuring the adsorption and photocatalytic properties of g-C3N4/PMMA/PUR membranes (with a different PMMA content) in an aqueous solution of methylene blue. It was found that the prepared membranes were able to effectively adsorb and decompose methylene blue. On top of that, the membranes evinced a self-cleaning behavior, showing no coloration on their surfaces after contact with methylene blue, unlike in the case of unmodified fabric. After further treatment with H2O2, no decrease in photocatalytic activity was observed, indicating that the prepared membrane can also be easily regenerated. This study promises possibilities for the production of photocatalytic membranes and fabrics for both chemical and biological contaminant control.
Collapse
Affiliation(s)
- Ladislav Svoboda
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic; (R.D.); (J.B.)
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
| | - Nadia Licciardello
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (N.L.); (G.C.)
| | - Richard Dvorský
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic; (R.D.); (J.B.)
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
| | - Jiří Bednář
- IT4Innovations, VŠB—Technical University of Ostrava, Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic; (R.D.); (J.B.)
- Nanotechnology Centre, VŠB-Technical University of Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
| | - Jiří Henych
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 1001, 250 68 Řež, Czech Republic;
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (N.L.); (G.C.)
| |
Collapse
|
9
|
Huang A, Li X, Liang X, Zhang Y, Hu H, Yin Y, Huang Z. Solid-Phase Synthesis of Cellulose Acetate Butyrate as Microsphere Wall Materials for Sustained Release of Emamectin Benzoate. Polymers (Basel) 2018; 10:E1381. [PMID: 30961306 PMCID: PMC6401682 DOI: 10.3390/polym10121381] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Emamectin benzoate (EB), a widely used pesticide, is prone to decomposition by ultraviolet light and suffers from the corresponding loss of efficacy. The timed release of EB based on microspheres is one of the effective methods to solve this issue. As a non-toxic cellulose ester, cellulose acetate butyrate (CAB) is regarded as one of the best wall-forming materials for microcapsules with a good controlled release performance. Herein, two methods-mechanical activation (MA) technology and a conventional liquid phase (LP) method-were employed to synthesize different CABs, namely CAB-MA and CAB-LP, respectively. The molecular structure, rheological property, and thermal stability of these CABs were investigated. The two CABs were used to prepare microspheres for the loading and release of EB via an o/w (oil-in-water) solvent evaporation method. Moreover, the performances such as drug loading, drug entrapment, and anti-photolysis of the drug for these microspheres were studied. The results showed that both CABs were available as wall materials for loading and releasing EB. Compared with CAB-LP, CAB-MA presented a lower molecular weight and a narrower molecular weight distribution. Moreover, the MA method endowed the CAB with more ester substituent groups and less crystalline structure in comparison to the LP method, which had benefits including pelletizing and drug loading.
Collapse
Affiliation(s)
- Aimin Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
- Medical College of Guangxi University, Nanning 530004, China.
| | - Xuanhai Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Xingtang Liang
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China.
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Yanzhen Yin
- Qinzhou Key Laboratory of Biowaste Resources for Selenium-Enriched Functional Utilization, College of Petroleum and Chemical Engineering, Qinzhou University, Qinzhou 535011, China.
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
10
|
Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, Awang NA, W Salleh WN. An overview on cellulose-based material in tailoring bio-hybrid nanostructured photocatalysts for water treatment and renewable energy applications. Int J Biol Macromol 2017; 103:1232-1256. [PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Abstract
A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
Collapse
Affiliation(s)
- Mohamad Azuwa Mohamed
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhazri Abd Mutalib
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Zul Adlan Mohd Hir
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M F M Zain
- Sustainable Construction Materials and Building Systems(SUCOMBS) Research Group, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Abu Bakar Mohamad
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Lorna Jeffery Minggu
- Solar Hydrogen Group, Fuel Cell Institute (SELFUEL), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Nor Asikin Awang
- Advanced Membrane Technology Research Centre, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - W N W Salleh
- Advanced Membrane Technology Research Centre, Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| |
Collapse
|