1
|
Vieira CSP, Segundo MA, Araújo AN. Cytochrome P450 electrochemical biosensors transforming in vitro metabolism testing - Opportunities and challenges. Bioelectrochemistry 2025; 163:108913. [PMID: 39854934 DOI: 10.1016/j.bioelechem.2025.108913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/06/2025] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
The ability of the living world to flourish in the face of constant exposure to dangerous chemicals depends on the management ability of a widespread group of enzymes known as heme-thiolate monooxygenases or cytochrome P450 superfamily. About three-quarters of all reactions determining the metabolism of endogenous compounds, of those carried in foods, of taken drugs, or even of synthetic chemicals discarded into the environment depend on their catalytic performance. The chromatographic and (photo)luminometric methods routinely used as predictive and analytical tools in laboratories have significant drawbacks ranging from limited shelf-life of reagents, use of synthetic substrates, laborious and tedious procedures for highly sensitive detection. In this review, alternative electrochemical biosensors using the cytochrome P450 enzymes as bio-element are emphasized in their main aspects as well regarding their implementation and usefulness. Despite the various schemes proposed for the implementation, reports on real applications are scant for several reasons, including low reaction rates, broad substrate specificity, uncoupling reactions occurrence, and the need for expensive electron transfer partners to promote electron transfer. Finally, the prospect for future developments is introduced, focusing on integrating miniaturized systems with electrochemical techniques, alongside optimizing enzyme immobilization methods and electrode modifications to improve enzymatic stability and enhance sensor reliability. This progress represents a crucial step towards the creation of portable biosensors that mimic human physiological responses, supporting the precision medicine approach.
Collapse
Affiliation(s)
- Carina S P Vieira
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marcela A Segundo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Potęga A, Göldner V, Niehaves E, Paluszkiewicz E, Karst U. Electrochemistry/mass spectrometry (EC/MS) for fast generation and identification of novel reactive metabolites of two unsymmetrical bisacridines with anticancer activity. J Pharm Biomed Anal 2023; 235:115607. [PMID: 37523868 DOI: 10.1016/j.jpba.2023.115607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/28/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
The development of a new drug requires knowledge about its metabolic fate in a living organism, regarding the comprehensive assessment of both drug therapeutic activity and toxicity profiles. Electrochemistry (EC) coupled with mass spectrometry (MS) is an efficient tool for predicting the phase I metabolism of redox-sensitive drugs. In particular, EC/MS represents a clear advantage for the generation of reactive drug transformation products and their direct identification compared to biological matrices. In this work, we focused on the characterization of novel electrochemical products of two representative unsymmetrical bisacridines (C-2028 and C-2045) with demonstrated high anticancer activity. The electrochemical thin-layer flow-through cell μ-PrepCell 2.0 (Antec Scientific) was used here for the effective metabolite electrosynthesis. The electrochemical simulation of C-2028 reductive and C-2045 oxidative metabolism resulted in the generation of new products that were not observed before. The formation of nitroso [M-O+H]+ and azoxy [2M-3O+H]+ species from C-2028, as well as a series of hydroxylated and/or dehydrogenated products, including possible quinones [M-2H+H]+ and [M+O-2H+H]+ from C-2045, was demonstrated. For the latter, a glutathione S-conjugate (m/z 935.3130) was also obtained in measurements supplemented with the excess of reduced glutathione. For the identification of the products of interest, structural confirmation based on MS/MS fragmentation experiments was performed. Novel products of electrochemical conversions of unsymmetrical bisacridines were discussed in the context of their possible biological effect on the human organism.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland.
| | - Valentin Göldner
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Erik Niehaves
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Ewa Paluszkiewicz
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry and BioTechMed Center, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany; International Graduate School for Battery Chemistry, Characterization, Analysis, Recycling and Application (BACCARA), University of Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
3
|
Kumar N, He J, Rusling JF. Electrochemical transformations catalyzed by cytochrome P450s and peroxidases. Chem Soc Rev 2023; 52:5135-5171. [PMID: 37458261 DOI: 10.1039/d3cs00461a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Cytochrome P450s (Cyt P450s) and peroxidases are enzymes featuring iron heme cofactors that have wide applicability as biocatalysts in chemical syntheses. Cyt P450s are a family of monooxygenases that oxidize fatty acids, steroids, and xenobiotics, synthesize hormones, and convert drugs and other chemicals to metabolites. Peroxidases are involved in breaking down hydrogen peroxide and can oxidize organic compounds during this process. Both heme-containing enzymes utilize active FeIVO intermediates to oxidize reactants. By incorporating these enzymes in stable thin films on electrodes, Cyt P450s and peroxidases can accept electrons from an electrode, albeit by different mechanisms, and catalyze organic transformations in a feasible and cost-effective way. This is an advantageous approach, often called bioelectrocatalysis, compared to their biological pathways in solution that require expensive biochemical reductants such as NADPH or additional enzymes to recycle NADPH for Cyt P450s. Bioelectrocatalysis also serves as an ex situ platform to investigate metabolism of drugs and bio-relevant chemicals. In this paper we review biocatalytic electrochemical reactions using Cyt P450s including C-H activation, S-oxidation, epoxidation, N-hydroxylation, and oxidative N-, and O-dealkylation; as well as reactions catalyzed by peroxidases including synthetically important oxidations of organic compounds. Design aspects of these bioelectrocatalytic reactions are presented and discussed, including enzyme film formation on electrodes, temperature, pH, solvents, and activation of the enzymes. Finally, we discuss challenges and future perspective of these two important bioelectrocatalytic systems.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
| | - James F Rusling
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3136, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269-3136, USA
- Department of Surgery and Neag Cancer Center, Uconn Health, Farmington, CT 06030, USA
- School of Chemistry, National University of Ireland at Galway, Galway, Ireland
| |
Collapse
|
4
|
Masamrekh RA, Kuzikov AV, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV. Interaction of Abiraterone and Its Pharmacologically Active Metabolite D4A with Cytochrome P450 2C9 (CYP2C9). BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2022. [DOI: 10.1134/s1990750822040059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Enzymology on an Electrode and in a Nanopore: Analysis Algorithms, Enzyme Kinetics, and Perspectives. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
6
|
Biotransformation of phenytoin in the electrochemically-driven CYP2C19 system. Biophys Chem 2022; 291:106894. [PMID: 36174335 DOI: 10.1016/j.bpc.2022.106894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022]
Abstract
The possibility of the detection of atypical kinetic profiles of drug biotransformation using electrochemical systems based on immobilized cytochromes P450 with phenytoin hydroxylation by cytochrome P450 2C19 (CYP2C19) as an example was evaluated for the first time. For this purpose, we developed an electrochemical system, where one of the electrodes was modified by didodecyldimethylammonium bromide (DDAB) and was used as an electron donor for reduction of heme iron ion of the immobilized CYP2C19 and initiation of the catalytic reaction, while the second electrode was not modified and served for an electrochemical quantitation of 4-hydroxyphenytoin, which is a metabolite of antiepileptic drug phenytoin, by its oxidation peak. It was revealed that the dependence of the rate of 4-hydroxyphenytoin formation on phenytoin concentration is described by the equation for two enzymes or two binding sites indicating the existing of high- and low-affinity forms of the enzyme. The atypical kinetics and the kinetic parameters of CYP2C19-mediated phenytoin hydroxylation in the electrochemical system correlate to the same characteristics obtained by other authors in an alternative enzymatic system. Our results demonstrate the possibility of electrochemical systems based on cytochromes P450 to be applied for the detection of atypical kinetic profiles of drug metabolism.
Collapse
|
7
|
Electroenzymatic Model System for the Determination of Catalytic Activity of Erwinia carotovora L-Asparaginase. Processes (Basel) 2022. [DOI: 10.3390/pr10071313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An electrochemical method for the determination of the catalytic activity of L-asparaginase (ASNase) from Erwinia carotovora was proposed. Our approach is based on the electrooxidation of amino acids from L-asparaginase polypeptide backbones. The electrochemical behavior of ASNase on electrodes obtained by screen-printing modified with single-wall carbon nanotubes (SPE/SWCNTs) as sensing elements demonstrated a broad oxidation peak at 0.5–0.6 V centered at 0.531 ± 0.010 V. We have shown that in the presence of the substrate L-asparagine, the oxidation current of the enzyme was reduced in a concentration-dependent manner. The specificity of electrochemical analysis was confirmed in experiments with glycine, an amino acid with no substrate activity on ASNase and does not reduce the oxidation peak of L-asparaginase. The addition of glycine did not significantly influence the amplitude of the oxidation current. The innovative aspects of the proposed electrochemical sensor are the direct monitoring of ASNase catalytic activity and a reagentless approach, which does not require additional reagents or labels.
Collapse
|
8
|
|
9
|
Masamrekh RA, Kuzikov AV, Filippova TA, Sherbakov KA, Veselovsky AV, Shumyantseva VV. [The interactions of abiraterone and its pharmacologically active metabolite D4A with cytochrome P450 2C9 (CYP2C9)]. BIOMEDITSINSKAIA KHIMIIA 2022; 68:201-211. [PMID: 35717584 DOI: 10.18097/pbmc20226803201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Interactions of cytochrome P450 2C9 (CYP2C9) were studied with the antitumor drug abiraterone and its pharmacologically active metabolite D4A, promising as an agent for prostate cancer treatment. It was shown by absorption spectroscopy, that both investigated compounds induced spectral changes of CYP2C9, indicating interactions of the pyridine nitrogen atom with the heme iron ion of the active site of the enzyme, but interactions of the ligands with the enzyme could be mediated by a water molecule bound to the heme iron ion. Based on the spectral changes, the values of dissociation constants (KS) for complexes of abiraterone and D4A with CYP2C9 were calculated as 1.73±0.14 μM and 3.95±0.16 μM. Both compounds inhibited O-demethylase activity of CYP2C9 towards its substrate. At 100 μM concentration of naproxen the concentrations of abiraterone, D4A and sulfaphenazole inhibiting CYP2C9 activity by 50% (IC50) were determined as 13.9 μM, 40 μM and 41 μM, respectively. The obtained results can be used for prognosis of drug-drug interactions at CYP2C9 level during administration of abiraterone or D4A as an antitumor agent for prostate cancer treatment in complex pharmacotherapy.
Collapse
Affiliation(s)
- R A Masamrekh
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - A V Kuzikov
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - T A Filippova
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A V Veselovsky
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - V V Shumyantseva
- Institute of Biomedical Chemistry, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|