1
|
Maia C, Pôjo V, Tavares T, Pires JCM, Malcata FX. Surfactant-Mediated Microalgal Flocculation: Process Efficiency and Kinetic Modelling. Bioengineering (Basel) 2024; 11:722. [PMID: 39061804 PMCID: PMC11274027 DOI: 10.3390/bioengineering11070722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Microalgae are a valuable source of lipids, proteins, and pigments, but there are challenges in large-scale production, especially in harvesting. Existing methods lack proven efficacy and cost-effectiveness. However, flocculation, an energy-efficient technique, is emerging as a promising solution. Integrating surfactants enhances microalgal harvesting and disruption simultaneously, reducing processing costs. This study investigated cetyltrimethylammonium bromide (CTAB), dodecyltrimethylammonium bromide (DTAB), and sodium dodecyl sulphate (SDS) for harvesting Tetraselmis sp. strains (75LG and 46NLG). CTAB exhibits superior results, with 88% harvesting efficiency at 1500 and 2000 mg L-1 for 75LG and 46NLG, respectively, for 60 min of sedimentation-thus being able to reduce the operating time. Beyond evaluating harvesting efficiency, our study explored the kinetics of the process; the modified Gompertz model led to the best fit. Furthermore, the largest kinetic constants were observed with CTAB, thus highlighting its efficacy in optimising the microalgal harvesting process. With the incorporation of the suggested enhancements, which should be addressed in future work, CTAB could hold the potential to optimise microalgal harvesting for cost-effective and sustainable large-scale production, eventually unlocking the commercial potential of microalgae for biodiesel production.
Collapse
Affiliation(s)
- Carolina Maia
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Vânia Pôjo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Tânia Tavares
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - José C. M. Pires
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Francisco Xavier Malcata
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (C.M.); (V.P.); (T.T.); (F.X.M.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
2
|
Yu Q, Yu Z, Song X, Cao X, Jiang W, Chu Y. The synthesis of an acrylamide copolymer and its synergistic effects on clay flocculation of red tide organisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117326. [PMID: 36764213 DOI: 10.1016/j.jenvman.2023.117326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The modified clay (MC) method is a common emergency treatment technology for red tides, and the selection of surface modifiers is the key to the MC technology. A cationic polymeric modifier, the copolymer of dimethyl diallyl ammonium chloride and acrylamide (P (DMDAAC-co-AM), PDA) was optimized via a visible-light-induced polymerization technique. The PDA-modified clay (PDAMC) was prepared with strong salt tolerance and achieved efficiencies of 86% at the concentration of 50 mg L-1, and the dose was 90% lower than that of aluminum polychloride-modified clay (PACMC). While polyacrylamide and commercial PDA can achieve efficiencies of only 25 and 67%, respectively, but high doses were required. This is because PDA changed the surface charges of clay particles from negative to positive, which promotes the formation of the polymer-chains bridging network to overcome the difficulties of curling in seawater. According to the analysis of flocculation parameters and spatial conformation of PDAMC, the high salinity tolerance of the PDAMC was attributed to the synergistic processes of charge neutralization and the three-dimensional network bridging. Therefore, this study has developed a highly effective flocculant material used in seawater and provided an important reference for the management of red tide organisms.
Collapse
Affiliation(s)
- Qi Yu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China; CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiuxian Song
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xihua Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbin Jiang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Functional Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Yanyang Chu
- School of Environment and Safety Engineering, Qingdao University of Science and Technology, Shandong, Qingdao, 266042, China
| |
Collapse
|