1
|
Tang Y, Levin M, Long OG, Eisenbach CD, Cohen N, Valentine MT. Data-Driven Framework for the Prediction of PEGDA Hydrogel Mechanics. ACS Biomater Sci Eng 2025; 11:259-267. [PMID: 39656140 DOI: 10.1021/acsbiomaterials.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Poly(ethylene glycol) diacrylate (PEGDA) hydrogels are biocompatible and photo-cross-linkable, with accessible values of elastic modulus ranging from kPa to MPa, leading to their wide use in biomedical and soft material applications. However, PEGDA gels possess complex microstructures, limiting the use of standard polymer theories to describe them. As a result, we lack a foundational understanding of how to relate their composition, processing, and mechanical properties. To address this need, we use a data-driven approach to develop an empirical predictive framework based on high-quality data obtained from uniaxial compression tests and validated using prior data found in the literature. The developed framework accurately predicts the hydrogel shear modulus and the strain-stiffening coefficient using only synthesis parameters, such as the molecular weight and initial concentration of PEGDA, as inputs. These results provide simple and reliable experimental guidelines for precisely controlling both the low-strain and high-strain mechanical responses of PEGDA hydrogels, thereby facilitating their design for various applications.
Collapse
Affiliation(s)
- Yongkui Tang
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michal Levin
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Olivia G Long
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Claus D Eisenbach
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Institut für Polymerchemie, University of Stuttgart, Stuttgart D-70569, Germany
| | - Noy Cohen
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
2
|
Majcher MJ, Himbert S, Vito F, Campea MA, Dave R, Vetergaard Jensen G, Rheinstadter MC, Smeets NMB, Hoare T. Investigating the Kinetics and Structure of Network Formation in Ultraviolet-Photopolymerizable Starch Nanogel Network Hydrogels via Very Small-Angle Neutron Scattering and Small-Amplitude Oscillatory Shear Rheology. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael J. Majcher
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Sebastian Himbert
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Francesco Vito
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Matthew A. Campea
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Ridhdhi Dave
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Grethe Vetergaard Jensen
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-6100, United States
| | - Maikel C. Rheinstadter
- Department of Physics & Astronomy, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Niels M. B. Smeets
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, 1280 Main St. W., Hamilton, Ontario L8S 4L8, Canada
| |
Collapse
|
3
|
He G, He T, Lu P, Tian G, Hu Y, Hua D, Gu H, Duan Y. Application of process simulation and statistical method to acrylamide polymerization in a batch reactor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Guoxu He
- School of Chemical and Environmental Engineering Pingdingshan University Pingdingshan China
| | - Ting He
- Quality Department Aerospace Science & Industry Corp Defense Technology R&T Center Beijing China
| | - Peidong Lu
- The Institute for Chemical Physics Beijing Institute of Technology Beijing China
| | - Gang Tian
- School of Chemical and Environmental Engineering Pingdingshan University Pingdingshan China
| | - Ying Hu
- School of Chemical and Environmental Engineering Pingdingshan University Pingdingshan China
| | - Dong Hua
- Quality Department Aerospace Science & Industry Corp Defense Technology R&T Center Beijing China
| | - Haitao Gu
- Quality Department Aerospace Science & Industry Corp Defense Technology R&T Center Beijing China
| | - Yanming Duan
- Quality Department Aerospace Science & Industry Corp Defense Technology R&T Center Beijing China
| |
Collapse
|
4
|
Michel SES, Rogers SE, Briscoe WH, Galan MC. Tunable Thiol-Ene Photo-Cross-Linked Chitosan-Based Hydrogels for Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8075-8083. [PMID: 35019547 DOI: 10.1021/acsabm.0c01171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Access to biocompatible hydrogels with tunable properties is of great interest in biomedical applications. Here we report the synthesis and characterization of a series of photo-cross-linked chitosan hydrogels from norbornene-functionalized chitosan (CS-nb) and various thiolated cross-linkers. The resulting materials were characterized by NMR, swelling ratio, rheology, SEM, and small angle neutron scattering (SANS) measurements. The hydrogels exhibited pH- and salt-dependent swelling, while the macro- and microscale properties could be modulated by the choice and degree of cross-linker or the polymer concentration. The materials could be molded in situ and loaded with small molecules that can be released overtime. Moreover, the incorporation of collagen in the hydrogels drastically improved cell adhesion, with excellent viabilities of human dermofibroblast cells on the hydrogels observed for up to 6 days, highlighting the potential use of these materials in the biomedical area.
Collapse
Affiliation(s)
- Sarah E S Michel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot, OX11 0QX, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, U.K
| |
Collapse
|
5
|
Michel SSE, Kilner A, Eloi JC, Rogers SE, Briscoe WH, Galan MC. Norbornene-Functionalized Chitosan Hydrogels and Microgels via Unprecedented Photoinitiated Self-Assembly for Potential Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:5253-5262. [PMID: 35021700 DOI: 10.1021/acsabm.0c00629] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Access to biocompatible self-assembled gels and microgels is of great interests for a variety of biological applications from tissue engineering to drug delivery. Here, the facile synthesis of supramolecular hydrogels of norbornene (nb)-functionalized chitosan (CS-nb) via UV-triggered self-assembly in the presence of Irgacure 2959 (IRG) is reported. The in vitro stable hydrogels are injectable and showed pH-responsive swelling behavior, while their structure and mechanical properties could be tuned by tailoring the stereochemistry of the norbornene derivative (e.g., endo- or -exo). Interestingly, unlike other nb-type hydrogels, the gels possess nanopores within their structure, which might lead to potential drug delivery applications. A gelation mechanism was proposed based on hydrophobic interactions following the combination of IRG on norbornene, as supported by 1H NMR. This self-assembly mechanism was used to access microgels of size 100-150 nm, which could be further functionalized and showed no significant toxicity to human dermofibroblast cells.
Collapse
Affiliation(s)
- Sarah S E Michel
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Alice Kilner
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Jean-Charles Eloi
- Chemical Imaging Facility, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - Sarah E Rogers
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| | - M Carmen Galan
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS81TS, U.K
| |
Collapse
|
6
|
Schneider S, Jung F, Mergel O, Lammertz J, Nickel AC, Caumanns T, Mhamdi A, Mayer J, Mitsos A, Plamper FA. Model-based design and synthesis of ferrocene containing microgels. Polym Chem 2020. [DOI: 10.1039/c9py00494g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modelling and synthesis go hand in hand to efficiently engineer copolymer microgels with various architectures: core–shell structures (with ferrocene mainly in the core or in the shell) and also microgels with homogeneous comonomer distribution.
Collapse
Affiliation(s)
- Sabine Schneider
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Falco Jung
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Olga Mergel
- Department of Biomedical Engineering-FB40
- University of Groningen
- University Medical Center Groningen
- Groningen
- The Netherlands
| | - Janik Lammertz
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Anne C. Nickel
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
| | - Tobias Caumanns
- GFE Central Facility for Electron Microscopy
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Adel Mhamdi
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Joachim Mayer
- GFE Central Facility for Electron Microscopy
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alexander Mitsos
- Aachener Verfahrenstechnik
- Process Systems Engineering
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Felix A. Plamper
- Institute of Physical Chemistry
- RWTH Aachen University
- 52056 Aachen
- Germany
- Institute of Physical Chemistry
| |
Collapse
|