1
|
Sigg A, Klimacek M, Nidetzky B. Pushing the boundaries of phosphorylase cascade reaction for cellobiose production I: Kinetic model development. Biotechnol Bioeng 2024; 121:580-592. [PMID: 37983971 DOI: 10.1002/bit.28602] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/22/2023]
Abstract
One-pot cascade reactions of coupled disaccharide phosphorylases enable an efficient transglycosylation via intermediary α-d-glucose 1-phosphate (G1P). Such transformations have promising applications in the production of carbohydrate commodities, including the disaccharide cellobiose for food and feed use. Several studies have shown sucrose and cellobiose phosphorylase for cellobiose synthesis from sucrose, but the boundaries on transformation efficiency that result from kinetic and thermodynamic characteristics of the individual enzyme reactions are not known. Here, we assessed in a step-by-step systematic fashion the practical requirements of a kinetic model to describe cellobiose production at industrially relevant substrate concentrations of up to 600 mM sucrose and glucose each. Mechanistic initial-rate models of the two-substrate reactions of sucrose phosphorylase (sucrose + phosphate → G1P + fructose) and cellobiose phosphorylase (G1P + glucose → cellobiose + phosphate) were needed and additionally required expansion by terms of glucose inhibition, in particular a distinctive two-site glucose substrate inhibition of the cellobiose phosphorylase (from Cellulumonas uda). Combined with mass action terms accounting for the approach to equilibrium, the kinetic model gave an excellent fit and a robust prediction of the full reaction time courses for a wide range of enzyme activities as well as substrate concentrations, including the variable substoichiometric concentration of phosphate. The model thus provides the essential engineering tool to disentangle the highly interrelated factors of conversion efficiency in the coupled enzyme reaction; and it establishes the necessary basis of window of operation calculations for targeted optimizations toward different process tasks.
Collapse
Affiliation(s)
- Alexander Sigg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Mario Klimacek
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| |
Collapse
|
2
|
Baader FJ, Althaus P, Bardow A, Dahmen M. Demand response for flat nonlinear MIMO processes using dynamic ramping constraints. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
3
|
Cardillo AG, Castellanos MM, Desailly B, Dessoy S, Mariti M, Portela RMC, Scutella B, von Stosch M, Tomba E, Varsakelis C. Towards in silico Process Modeling for Vaccines. Trends Biotechnol 2021; 39:1120-1130. [PMID: 33707043 DOI: 10.1016/j.tibtech.2021.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/23/2023]
Abstract
Chemical, manufacturing, and control development timelines occupy a significant part of vaccine end-to-end development. In the on-going race for accelerating timelines, in silico process development constitutes a viable strategy that can be achieved through an artificial intelligence (AI)-driven or a mechanistically oriented approach. In this opinion, we focus on the mechanistic option and report on the modeling competencies required to achieve it. By inspecting the most frequent vaccine process units, we identify fluid mechanics, thermodynamics and transport phenomena, intracellular modeling, hybrid modeling and data science, and model-based design of experiments as the pillars for vaccine development. In addition, we craft a generic pathway for accommodating the modeling competencies into an in silico process development strategy.
Collapse
Affiliation(s)
| | | | - Benoit Desailly
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Sandrine Dessoy
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Marco Mariti
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Rui M C Portela
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium
| | - Bernadette Scutella
- Technical Research and Development, GSK, 14200 Shady Grove Rd, Rockville, MD 20850, USA
| | - Moritz von Stosch
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium; Current affiliation: Data How AG, Zürichstrasse 137, 8600 Dübendorf, Switzerland
| | - Emanuele Tomba
- Technical Research and Development, GSK, 1 Via Fiorentina, 53100 Siena, SI, Italy
| | - Christos Varsakelis
- Technical Research and Development, GSK, 89 Rue De L'Institut, B-1330 Rixensart, Belgium.
| |
Collapse
|