1
|
Ruban SM, Ramadass K, Singh G, Talapaneni SN, Kamalakar G, Gadipelly CR, Mannepalli LK, Sugi Y, Vinu A. Organocatalysis with carbon nitrides. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2188879. [PMID: 37007670 PMCID: PMC10054243 DOI: 10.1080/14686996.2023.2188879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/05/2023] [Indexed: 06/19/2023]
Abstract
Carbon nitrides, a distinguished class of metal-free catalytic materials, have presented a good potential for chemical transformations and are expected to become prominent materials for organocatalysis. This is largely possible due to their low cost, exceptional thermal and chemical stability, non-toxicity, ease of functionalization, porosity development, etc. Especially, the carbon nitrides with increased porosity and nitrogen contents are more versatile than their bulk counterparts for catalysis. These N-rich carbon nitrides are discussed in the earlier parts of the review. Later, the review highlights the role of such carbon nitride materials for the various organic catalytic reactions including Knoevenagel condensation, oxidation, hydrogenation, esterification, transesterification, cycloaddition, and hydrolysis. The recently emerging concepts in carbon nitride-based organocatalysis have been given special attention. In each of the sections, the structure-property relationship of the materials was discussed and related to their catalysis action. Relevant comparisons with other catalytic materials are also discussed to realize their real potential value. The perspective, challenges, and future directions are also discussed. The overall objective of this review is to provide up-to-date information on new developments in carbon nitride-based organic catalysis reactions that could see them rising as prominent catalytic materials in the future.
Collapse
Affiliation(s)
- Sujanya Maria Ruban
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | - Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| | | | - Gunda Kamalakar
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | | | | | - Yoshihiro Sugi
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
- Faculty of Engineering, Gifu University, Gifu, Japan
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment (CESE), School of Engineering, The University of Newcastle, Callaghan, Australia
| |
Collapse
|
2
|
Lim XB, Ong WJ. A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: from materials design to catalysis for clean energy. NANOSCALE HORIZONS 2021; 6:588-633. [PMID: 34018529 DOI: 10.1039/d1nh00127b] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The ceaseless increase of pollution cases due to the tremendous consumption of fossil fuels has steered the world towards an environmental crisis and necessitated urgency to curtail noxious sulfur oxide emissions. Since the world is moving toward green chemistry, a fuel desulfurization process driven by clean technology is of paramount significance in the field of environmental remediation. Among the novel desulfurization techniques, the oxidative desulfurization (ODS) process has been intensively studied and is highlighted as the rising star to effectuate sulfur-free fuels due to its mild reaction conditions and remarkable desulfurization performances in the past decade. This critical review emphasizes the latest advances in thermal catalytic ODS and photocatalytic ODS related to the design and synthesis routes of myriad materials. This encompasses the engineering of metal oxides, ionic liquids, deep eutectic solvents, polyoxometalates, metal-organic frameworks, metal-free materials and their hybrids in the customization of advantageous properties in terms of morphology, topography, composition and electronic states. The essential connection between catalyst characteristics and performances in ODS will be critically discussed along with corresponding reaction mechanisms to provide thorough insight for shaping future research directions. The impacts of oxidant type, solvent type, temperature and other pivotal factors on the effectiveness of ODS are outlined. Finally, a summary of confronted challenges and future outlooks in the journey to ODS application is presented.
Collapse
Affiliation(s)
- Xian Bin Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia
| | - Wee-Jun Ong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia. and Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT), Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|