Zhuo Y, Yang P, Zhou M, Peng D, Han Y. Low H
2S content biogas biodesulfurization from high solid sludge anaerobic digestion using limited external aeration biotrickling filter: Effect of gas-liquid pattern on oxygen utilization performance.
JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022;
314:115084. [PMID:
35452886 DOI:
10.1016/j.jenvman.2022.115084]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
An efficient and precise method is needed for low H2S content biogas biodesulfurization, produced during high solid sludge anaerobic digestion. Continuous experiments were conducted to evaluate the performance of a lab-scale biotrickling filter (BTF) in H2S removal and oxygen utilization. The results show that the sulfur loading rate decreased by 66% compared to conventional H2S content, thus achieving a sufficient removal efficiency (>0.9). With a limited external aeration (0.5-2.0 molO2·molS-1), the oxygen consumption (O/Sre) to its supplement (O/Sin) ratios increased from 50-71% (conventional H2S) to 83-92% (low H2S), indicating that low H2S flux promotes a sufficient oxygen utilization. Furthermore, the difference in oxygen utilization between co-current and counter-current flow patterns decreased under limited external aeration as the H2S content sharply decreased. These results indicate that a dynamic oxygen-sulfur (O-S) balanced multistage BTF is expected to achieve a more precise vertical O-S distribution for sulfur resource recovery.
Collapse