1
|
Hormsombut T, Mekjinda N, Kalasin S, Surareungchai W, Rijiravanich P. Mesoporous Silica Nanoparticles-Enhanced Microarray Technology for Highly Sensitive Simultaneous Detection of Multiplex Foodborne Pathogens. ACS APPLIED BIO MATERIALS 2024; 7:2367-2377. [PMID: 38497627 PMCID: PMC11234362 DOI: 10.1021/acsabm.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Ensuring food safety is paramount for the food industry and global health concerns. In this study, we have developed a method for the detection of prevalent foodborne pathogenic bacteria, including Escherichia coli, Salmonella spp., Listeria spp., Shigella spp., Campylobacter spp., Clostridium spp., and Vibrio spp., utilizing antibody-aptamer arrays. To enhance the fluorescence signals on the microarray, the mesoporous silica nanoparticles (MSNs) conjugated with fluorescein, streptavidin, and seven detection antibodies-biotin were employed, forming fluorescein doped mesoporous silica nanoparticles conjugated with detection antibodies (MSNs-Flu-SA-Abs) complexes. The array pattern was designed for easy readability and enabled the simultaneous detection of all seven foodborne pathogens, referred to as the 7FP-biochip. Following the optimization of MSNs-Flu-SA-Abs complexes attachment and enhancement of the detection signal in fluorescent immunoassays, a high level of sensitivity was achieved. The detection limits for the seven pathogens in both buffer and food samples were 102 CFU/mL through visual screening, with fluorescent intensity quantification achieving levels as low as 20-34 CFU/g were achieved on the antibody-aptamer arrays. Our antibody-aptamer array offers several advantages, including significantly reduced nonspecific binding with no cross-reaction between bacteria. Importantly, our platform detection exhibited no cross-reactivity among the tested bacteria in this study. The multiplex detection of foodborne pathogens in canned tuna samples with spiked bacteria was successfully demonstrated in real food measurements. In conclusion, our study presents a promising method for detecting multiple foodborne pathogens simultaneously. With its high sensitivity and specificity, the developed antibody-aptamer array holds great potential for enhancing food safety and public health.
Collapse
Affiliation(s)
- Timpika Hormsombut
- Faculty
of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Sensor
Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
| | - Nutsara Mekjinda
- Sensor
Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
- Analytical
Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| | - Surachate Kalasin
- Faculty
of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Werasak Surareungchai
- Faculty
of Science and Nanoscience & Nanotechnology Graduate Program, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Sensor
Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
- Analytical
Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
- School
of Bioresources and Technology, King Mongkut’s
University of Technology Thonburi, Bangkok 10150, Thailand
| | - Patsamon Rijiravanich
- Sensor
Technology Laboratory, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Bang Khun Thian, Bangkok 10150, Thailand
- BioSciences
and Systems Biology Research Team, National Center for Genetic Engineering
and Biotechnology, National Sciences and Technology Development Agency, King Mongkut’s University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
2
|
Malatji K, Singh A, Thobakgale C, Alexandre K. Development of a Multiplex HIV/TB Diagnostic Assay Based on the Microarray Technology. BIOSENSORS 2023; 13:894. [PMID: 37754128 PMCID: PMC10526232 DOI: 10.3390/bios13090894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Currently there are diagnostic tests available for human immunodeficiency virus (HIV) and tuberculosis (TB); however, they are still diagnosed separately, which can delay treatment in cases of co-infection. Here we report on a multiplex microarray technology for the detection of HIV and TB antibodies using p24 as well as TB CFP10, ESAT6 and pstS1 antigens on epoxy-silane slides. To test this technology for antigen-antibody interactions, immobilized antigens were exposed to human sera spiked with physiological concentrations of primary antibodies, followed by secondary antibodies conjugated to a fluorescent reporter. HIV and TB antibodies were captured with no cross-reactivity observed. The sensitivity of the slides was compared to that of high-binding plates. We found that the slides were more sensitive, with the detection limit being 0.000954 µg/mL compared to 4.637 µg/mL for the plates. Furthermore, stability studies revealed that the immobilized antigens could be stored dry for at least 90 days and remained stable across all pH and temperatures assessed, with pH 7.4 and 25 °C being optimal. The data collectively suggested that the HIV/TB multiplex detection technology we developed has the potential for use to diagnose HIV and TB co-infection, and thus can be developed further for the purpose.
Collapse
Affiliation(s)
- Kanyane Malatji
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
| | - Advaita Singh
- Future Production: Chemicals Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa
| | - Christina Thobakgale
- Department of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein, Johannesburg 2000, South Africa;
- Centre for HIV and STIs, National Institute for Communicable Diseases, Sandringham, Johannesburg 2192, South Africa
| | - Kabamba Alexandre
- Array Technology Laboratory, Synthetic Biology and Precision Medicine Centre: Next Generation Health Cluster, Council for Scientific and Industrial Research, Brummeria, Pretoria 0001, South Africa (K.A.)
| |
Collapse
|
3
|
Yarynka D, Chegel V, Piletska E, Piletsky S, Dubey L, Dubey I, Nikolaiev R, Brovko O, Sergeyeva T. An enhanced fluorescent sensor system based on molecularly imprinted polymer chips with silver nanoparticles for highly-sensitive zearalenone analysis. Analyst 2023; 148:2633-2643. [PMID: 37191127 DOI: 10.1039/d2an01991d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A novel enhanced fluorescent sensor system for zearalenone (ZON) determination in flour samples is presented. The ZON-selective molecularly imprinted polymer (MIP) films were developed with a computational modelling method and synthesised with cyclododecyl-2,4-dihydroxybenzoate as a "dummy" template and ethylene glycol methacrylate phosphate as a functional monomer acted as the selective recognition elements for ZON fluorescence detection. Spherical silver nanoparticles (AgNPs) were embedded in the MIP films' structure to enhance the sensor sensitivity. The imprinted films showed a high ZON recognition ability compared to non-imprinted films. Various factors that affected the measurement of the analysed sample were investigated and optimised. Embedding the AgNPs in the MIP films' structure led to an enhanced sensitivity (up to a 200-fold decrease of LOD) compared to unmodified MIP films. This fluorescent sensor system provided ZON analysis with high sensitivity, specificity, and a wider linear dynamic range of 5 ng mL-1 to 25 μg mL-1. An enhanced fluorescent sensor system based on MIP chips with embedded AgNPs could detect trace amounts of ZON in foods and feedstuffs with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Daria Yarynka
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo str., 03143 Kyiv, Ukraine.
| | - Volodymyr Chegel
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of, Ukraine, 41, prospect Nauky, 03680 Kyiv, Ukraine
| | - Elena Piletska
- School of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Sergey Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester, Leicester LE1 7RH, UK
| | - Larysa Dubey
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo str., 03143 Kyiv, Ukraine.
| | - Igor Dubey
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo str., 03143 Kyiv, Ukraine.
| | - Roman Nikolaiev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo str., 03143 Kyiv, Ukraine.
| | - Oleksandr Brovko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48, Kharkivske shosse, 02160 Kyiv, Ukraine
| | - Tetyana Sergeyeva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo str., 03143 Kyiv, Ukraine.
| |
Collapse
|
4
|
Special Issue “Micro and Nanotechnology: Application in Surface Modification”. Processes (Basel) 2022. [DOI: 10.3390/pr10061121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Surface modification is crucial to the fabrication of (multi)functional materials and interfaces for a range of applications, such as superhydrophobic and self-cleaning surfaces, anti-biofouling and antibacterial coatings, dropwise condensation, packaging materials, sensors, catalysis, and photonics [...]
Collapse
|
5
|
Sergeyeva T, Yarynka D, Lytvyn V, Demydov P, Lopatynskyi A, Stepanenko Y, Brovko O, Pinchuk A, Chegel V. Highly-selective and sensitive plasmon-enhanced fluorescence sensor of aflatoxins. Analyst 2022; 147:1135-1143. [PMID: 35171150 DOI: 10.1039/d1an02173g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate a novel sensor platform with enhanced sensitivity and selectivity for detecting aflatoxin B1 - a common food toxin in cereals. The approach is based on a molecularly imprinted polymer film that provides selective binding of the aflatoxin B1 and fluorescence signal from the analyte molecule enhanced by the local electric field induced in close proximity to the surface of a silver nanoparticle excited at the localized surface plasmon resonance (LSPR) wavelength. Molecularly imprinted polymers (MIPs) with supramolecular aflatoxin-selective receptor sites and embedded spherical silver nanoparticles (with diameters 30-70 nm, the LSPR band 407 nm) were prepared in the form of a thin polymer film on the surface of a glass slide using in situ polymerization. The detection limit of the sensor for aflatoxin B1 is 0.3 ng mL-1, which is significantly lower than for a fluorescent sensor without silver nanoparticles. The plasmon-enhanced fluorescence factor is 33, and the linear dynamic range of the sensor is 0.3-25 ng mL-1.
Collapse
Affiliation(s)
- Tetyana Sergeyeva
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine.
| | - Daria Yarynka
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine.
| | - Vitaly Lytvyn
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, prospect Nauky, 03680 Kyiv, Ukraine.
| | - Petro Demydov
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, prospect Nauky, 03680 Kyiv, Ukraine.
| | - Andriy Lopatynskyi
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, prospect Nauky, 03680 Kyiv, Ukraine. .,Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| | - Yevgeny Stepanenko
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine.
| | - Oleksandr Brovko
- Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine, 48, Kharkivske shosse, 02160 Kyiv, Ukraine
| | - Anatoly Pinchuk
- University of Colorado Colorado Springs, 420 Austin Bluffs, Parkway, CO, USA
| | - Volodymyr Chegel
- V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, prospect Nauky, 03680 Kyiv, Ukraine. .,Institute of High Technologies, Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, 01601 Kyiv, Ukraine
| |
Collapse
|
6
|
Tittlemier S, Cramer B, Dall’Asta C, DeRosa M, Lattanzio V, Malone R, Maragos C, Stranska M, Sumarah M. Developments in mycotoxin analysis: an update for 2020-2021. WORLD MYCOTOXIN J 2022. [DOI: 10.3920/wmj2021.2752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This review summarises developments published in the period from mid-2020 to mid-2021 on the analysis of a number of diverse matrices for mycotoxins. Notable developments in all aspects of mycotoxin analysis, from sampling and quality assurance/quality control of analytical results, to the various detection and quantitation technologies ranging from single mycotoxin biosensors to comprehensive instrumental methods are presented and discussed. The summary and discussion of this past year’s developments in detection and quantitation technology covers chromatography with targeted or non-targeted high resolution mass spectrometry, tandem mass spectrometry, detection other than mass spectrometry, biosensors, as well as assays using alternatives to antibodies. This critical review aims to briefly present the most important recent developments and trends in mycotoxin determination, as well as to address limitations of the presented methodologies.
Collapse
Affiliation(s)
- S.A. Tittlemier
- Canadian Grain Commission, Grain Research Laboratory, 1404-303 Main St, Winnipeg, MB, R3C 3G8, Canada
| | - B. Cramer
- Westfälische Wilhelms-Universität Münster, Institute of Food Chemistry, Corrensstr. 45, 48149 Münster, Germany
| | - C. Dall’Asta
- Università di Parma, Department of Food and Drug, Viale delle Scienze 27/A, 43124 Parma, Italy
| | - M.C. DeRosa
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada
| | - V.M.T. Lattanzio
- National Research Council of Italy, Institute of Sciences of Food Production, via Amendola 122/O, 70126 Bari, Italy
| | - R. Malone
- Trilogy Analytical Laboratory, 870 Vossbrink Dr, Washington, MO 63090, USA
| | - C. Maragos
- United States Department of Agriculture, ARS National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - M. Stranska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Technicka 5, Prague, 166 28, Prague, Czech Republic
| | - M.W. Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford Street, London, ON, N5V 4T3, Canada
| |
Collapse
|