1
|
Amanzholova A, Coşkun A. Enhancing cancer stage prediction through hybrid deep neural networks: a comparative study. Front Big Data 2024; 7:1359703. [PMID: 38586474 PMCID: PMC10995364 DOI: 10.3389/fdata.2024.1359703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
Efficiently detecting and treating cancer at an early stage is crucial to improve the overall treatment process and mitigate the risk of disease progression. In the realm of research, the utilization of artificial intelligence technologies holds significant promise for enhancing advanced cancer diagnosis. Nonetheless, a notable hurdle arises when striving for precise cancer-stage diagnoses through the analysis of gene sets. Issues such as limited sample volumes, data dispersion, overfitting, and the use of linear classifiers with simple parameters hinder prediction performance. This study introduces an innovative approach for predicting early and late-stage cancers by integrating hybrid deep neural networks. A deep neural network classifier, developed using the open-source TensorFlow library and Keras network, incorporates a novel method that combines genetic algorithms, Extreme Learning Machines (ELM), and Deep Belief Networks (DBN). Specifically, two evolutionary techniques, DBN-ELM-BP and DBN-ELM-ELM, are proposed and evaluated using data from The Cancer Genome Atlas (TCGA), encompassing mRNA expression, miRNA levels, DNA methylation, and clinical information. The models demonstrate outstanding prediction accuracy (89.35%-98.75%) in distinguishing between early- and late-stage cancers. Comparative analysis against existing methods in the literature using the same cancer dataset reveals the superiority of the proposed hybrid method, highlighting its enhanced accuracy in cancer stage prediction.
Collapse
Affiliation(s)
- Alina Amanzholova
- Graduate School of Natural and Applied Sciences, Department of Computer Engineering, Gazi University, Ankara, Türkiye
- Khoja Akhmet Yassawi International Kazakh-Turkish University, Faculty of Engineering, Department of Computer Engineering, Turkistan, Kazakhstan
| | - Aysun Coşkun
- Department of Computer Engineering, Faculty of Technology, Gazi University, Ankara, Türkiye
| |
Collapse
|
2
|
Rakhshaninejad M, Fathian M, Shirkoohi R, Barzinpour F, Gandomi AH. Refining breast cancer biomarker discovery and drug targeting through an advanced data-driven approach. BMC Bioinformatics 2024; 25:33. [PMID: 38253993 PMCID: PMC10810249 DOI: 10.1186/s12859-024-05657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer remains a major public health challenge worldwide. The identification of accurate biomarkers is critical for the early detection and effective treatment of breast cancer. This study utilizes an integrative machine learning approach to analyze breast cancer gene expression data for superior biomarker and drug target discovery. Gene expression datasets, obtained from the GEO database, were merged post-preprocessing. From the merged dataset, differential expression analysis between breast cancer and normal samples revealed 164 differentially expressed genes. Meanwhile, a separate gene expression dataset revealed 350 differentially expressed genes. Additionally, the BGWO_SA_Ens algorithm, integrating binary grey wolf optimization and simulated annealing with an ensemble classifier, was employed on gene expression datasets to identify predictive genes including TOP2A, AKR1C3, EZH2, MMP1, EDNRB, S100B, and SPP1. From over 10,000 genes, BGWO_SA_Ens identified 1404 in the merged dataset (F1 score: 0.981, PR-AUC: 0.998, ROC-AUC: 0.995) and 1710 in the GSE45827 dataset (F1 score: 0.965, PR-AUC: 0.986, ROC-AUC: 0.972). The intersection of DEGs and BGWO_SA_Ens selected genes revealed 35 superior genes that were consistently significant across methods. Enrichment analyses uncovered the involvement of these superior genes in key pathways such as AMPK, Adipocytokine, and PPAR signaling. Protein-protein interaction network analysis highlighted subnetworks and central nodes. Finally, a drug-gene interaction investigation revealed connections between superior genes and anticancer drugs. Collectively, the machine learning workflow identified a robust gene signature for breast cancer, illuminated their biological roles, interactions and therapeutic associations, and underscored the potential of computational approaches in biomarker discovery and precision oncology.
Collapse
Affiliation(s)
- Morteza Rakhshaninejad
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Mohammad Fathian
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran.
| | - Reza Shirkoohi
- Cancer Biology Research Center, Cancer Institute, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Keshavarz Boulevard, Tehran, 1419733141, Tehran, Iran
| | - Farnaz Barzinpour
- Industrial Engineering Department, Iran University of Science and Technology, Hengam Street, Tehran, 1684613114, Tehran, Iran
| | - Amir H Gandomi
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, 2007, NSW, Australia
- University Research and Innovation Center (EKIK), Óbuda University, Budapest, 1034, Hungary
| |
Collapse
|
3
|
Jurenaite N, León-Periñán D, Donath V, Torge S, Jäkel R. SetQuence & SetOmic: Deep set transformers for whole genome and exome tumour analysis. Biosystems 2024; 235:105095. [PMID: 38065399 DOI: 10.1016/j.biosystems.2023.105095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
In oncology, Deep Learning has shown great potential to personalise tasks such as tumour type classification, based on per-patient omics data-sets. Being high dimensional, incorporation of such data in one model is a challenge, often leading to one-dimensional studies and, therefore, information loss. Instead, we first propose relying on non-fixed sets of whole genome or whole exome variant-associated sequences, which can be used for supervised learning of oncology-relevant tasks by our Set Transformer based Deep Neural Network, SetQuence. We optimise this architecture to improve its efficiency. This allows for exploration of not just coding but also non-coding variants, from large datasets. Second, we extend the model to incorporate these representations together with multiple other sources of omics data in a flexible way with SetOmic. Evaluation, using these representations, shows improved robustness and reduced information loss compared to previous approaches, while still being computationally tractable. By means of Explainable Artificial Intelligence methods, our models are able to recapitulate the biological contribution of highly attributed features in the tumours studied. This validation opens the door to novel directions in multi-faceted genome and exome wide biomarker discovery and personalised treatment among other presently clinically relevant tasks.
Collapse
Affiliation(s)
- Neringa Jurenaite
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), TU Dresden, Chemnitzer Str 46b, Dresden, 01187, Saxony, Germany.
| | - Daniel León-Periñán
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), TU Dresden, Chemnitzer Str 46b, Dresden, 01187, Saxony, Germany; Max-Delbrück-Centrum für Molekulare Medizin, Hannoversche Str. 28, Berlin, 10115, Germany.
| | - Veronika Donath
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), TU Dresden, Chemnitzer Str 46b, Dresden, 01187, Saxony, Germany.
| | - Sunna Torge
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), TU Dresden, Chemnitzer Str 46b, Dresden, 01187, Saxony, Germany.
| | - René Jäkel
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), TU Dresden, Chemnitzer Str 46b, Dresden, 01187, Saxony, Germany.
| |
Collapse
|
4
|
Adli HK, Remli MA, Wan Salihin Wong KNS, Ismail NA, González-Briones A, Corchado JM, Mohamad MS. Recent Advancements and Challenges of AIoT Application in Smart Agriculture: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:3752. [PMID: 37050812 PMCID: PMC10098529 DOI: 10.3390/s23073752] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
As the most popular technologies of the 21st century, artificial intelligence (AI) and the internet of things (IoT) are the most effective paradigms that have played a vital role in transforming the agricultural industry during the pandemic. The convergence of AI and IoT has sparked a recent wave of interest in artificial intelligence of things (AIoT). An IoT system provides data flow to AI techniques for data integration and interpretation as well as for the performance of automatic image analysis and data prediction. The adoption of AIoT technology significantly transforms the traditional agriculture scenario by addressing numerous challenges, including pest management and post-harvest management issues. Although AIoT is an essential driving force for smart agriculture, there are still some barriers that must be overcome. In this paper, a systematic literature review of AIoT is presented to highlight the current progress, its applications, and its advantages. The AIoT concept, from smart devices in IoT systems to the adoption of AI techniques, is discussed. The increasing trend in article publication regarding to AIoT topics is presented based on a database search process. Lastly, the challenges to the adoption of AIoT technology in modern agriculture are also discussed.
Collapse
Affiliation(s)
- Hasyiya Karimah Adli
- Faculty of Data Science & Computing, University Malaysia Kelantan, City Campus, Kota Bharu 16100, Kelantan, Malaysia; (H.K.A.)
| | - Muhammad Akmal Remli
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Kota Bharu 16100, Kelantan, Malaysia
| | | | - Nor Alina Ismail
- Faculty of Data Science & Computing, University Malaysia Kelantan, City Campus, Kota Bharu 16100, Kelantan, Malaysia; (H.K.A.)
| | - Alfonso González-Briones
- Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de Salamanca, Calle Espejo 2, 37007 Salamanca, Spain
| | - Juan Manuel Corchado
- Grupo de Investigación BISITE, Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca, Instituto de Investigación Biomédica de Salamanca, Calle Espejo 2, 37007 Salamanca, Spain
| | - Mohd Saberi Mohamad
- Health Data Science Lab, Department of Genetics and Genomics, College of Medical and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| |
Collapse
|
5
|
Artificial Intelligence for Antimicrobial Resistance Prediction: Challenges and Opportunities towards Practical Implementation. Antibiotics (Basel) 2023; 12:antibiotics12030523. [PMID: 36978390 PMCID: PMC10044311 DOI: 10.3390/antibiotics12030523] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Antimicrobial resistance (AMR) is emerging as a potential threat to many lives worldwide. It is very important to understand and apply effective strategies to counter the impact of AMR and its mutation from a medical treatment point of view. The intersection of artificial intelligence (AI), especially deep learning/machine learning, has led to a new direction in antimicrobial identification. Furthermore, presently, the availability of huge amounts of data from multiple sources has made it more effective to use these artificial intelligence techniques to identify interesting insights into AMR genes such as new genes, mutations, drug identification, conditions favorable to spread, and so on. Therefore, this paper presents a review of state-of-the-art challenges and opportunities. These include interesting input features posing challenges in use, state-of-the-art deep-learning/machine-learning models for robustness and high accuracy, challenges, and prospects to apply these techniques for practical purposes. The paper concludes with the encouragement to apply AI to the AMR sector with the intention of practical diagnosis and treatment, since presently most studies are at early stages with minimal application in the practice of diagnosis and treatment of disease.
Collapse
|
6
|
Classification of COVID-19 Patients into Clinically Relevant Subsets by a Novel Machine Learning Pipeline Using Transcriptomic Features. Int J Mol Sci 2023; 24:ijms24054905. [PMID: 36902333 PMCID: PMC10002748 DOI: 10.3390/ijms24054905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
The persistent impact of the COVID-19 pandemic and heterogeneity in disease manifestations point to a need for innovative approaches to identify drivers of immune pathology and predict whether infected patients will present with mild/moderate or severe disease. We have developed a novel iterative machine learning pipeline that utilizes gene enrichment profiles from blood transcriptome data to stratify COVID-19 patients based on disease severity and differentiate severe COVID cases from other patients with acute hypoxic respiratory failure. The pattern of gene module enrichment in COVID-19 patients overall reflected broad cellular expansion and metabolic dysfunction, whereas increased neutrophils, activated B cells, T-cell lymphopenia, and proinflammatory cytokine production were specific to severe COVID patients. Using this pipeline, we also identified small blood gene signatures indicative of COVID-19 diagnosis and severity that could be used as biomarker panels in the clinical setting.
Collapse
|
7
|
Alhassan S, Soudani A, Almusallam M. Energy-Efficient EEG-Based Scheme for Autism Spectrum Disorder Detection Using Wearable Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2228. [PMID: 36850829 PMCID: PMC9962521 DOI: 10.3390/s23042228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/15/2023]
Abstract
The deployment of wearable wireless systems that collect physiological indicators to aid in diagnosing neurological disorders represents a potential solution for the new generation of e-health systems. Electroencephalography (EEG), a recording of the brain's electrical activity, is a promising physiological test for the diagnosis of autism spectrum disorders. It can identify the abnormalities of the neural system that are associated with autism spectrum disorders. However, streaming EEG samples remotely for classification can reduce the wireless sensor's lifespan and creates doubt regarding the application's feasibility. Therefore, decreasing data transmission may conserve sensor energy and extend the lifespan of wireless sensor networks. This paper suggests the development of a sensor-based scheme for early age autism detection. The proposed scheme implements an energy-efficient method for signal transformation allowing relevant feature extraction for accurate classification using machine learning algorithms. The experimental results indicate an accuracy of 96%, a sensitivity of 100%, and around 95% of F1 score for all used machine learning models. The results also show that our scheme energy consumption is 97% lower than streaming the raw EEG samples.
Collapse
Affiliation(s)
- Sarah Alhassan
- Department of Computer Science, College of Computer and Information Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Computer Science, College of Computer and Information Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| | - Adel Soudani
- Department of Computer Science, College of Computer and Information Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Manan Almusallam
- Department of Computer Science, College of Computer and Information Science, Imam Mohammad Ibn Saud Islamic University, Riyadh 11564, Saudi Arabia
| |
Collapse
|
8
|
Alharbi F, Vakanski A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering (Basel) 2023; 10:bioengineering10020173. [PMID: 36829667 PMCID: PMC9952758 DOI: 10.3390/bioengineering10020173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
Cancer is a term that denotes a group of diseases caused by the abnormal growth of cells that can spread in different parts of the body. According to the World Health Organization (WHO), cancer is the second major cause of death after cardiovascular diseases. Gene expression can play a fundamental role in the early detection of cancer, as it is indicative of the biochemical processes in tissue and cells, as well as the genetic characteristics of an organism. Deoxyribonucleic acid (DNA) microarrays and ribonucleic acid (RNA)-sequencing methods for gene expression data allow quantifying the expression levels of genes and produce valuable data for computational analysis. This study reviews recent progress in gene expression analysis for cancer classification using machine learning methods. Both conventional and deep learning-based approaches are reviewed, with an emphasis on the application of deep learning models due to their comparative advantages for identifying gene patterns that are distinctive for various types of cancers. Relevant works that employ the most commonly used deep neural network architectures are covered, including multi-layer perceptrons, as well as convolutional, recurrent, graph, and transformer networks. This survey also presents an overview of the data collection methods for gene expression analysis and lists important datasets that are commonly used for supervised machine learning for this task. Furthermore, we review pertinent techniques for feature engineering and data preprocessing that are typically used to handle the high dimensionality of gene expression data, caused by a large number of genes present in data samples. The paper concludes with a discussion of future research directions for machine learning-based gene expression analysis for cancer classification.
Collapse
|
9
|
Ashraf MT, Hamid I, Nawaz Q, Ali H. Hybrid Approach using Extreme Gradient Boosting (XGBoost) and Evolutionary Algorithm for Cancer Classification. 2023 INTERNATIONAL MULTI-DISCIPLINARY CONFERENCE IN EMERGING RESEARCH TRENDS (IMCERT) 2023. [DOI: 10.1109/imcert57083.2023.10075236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
| | - Isma Hamid
- National Textie University,Department of Computer Science,Faisalabad,Pakistan
| | - Qamar Nawaz
- University of Agriculture,Department of Computer Science,Faisalabad,Pakistan
| | - Hamid Ali
- National Textile University,Department of Computer Science,Faisalabad,Pakistan
| |
Collapse
|
10
|
Dotolo S, Esposito Abate R, Roma C, Guido D, Preziosi A, Tropea B, Palluzzi F, Giacò L, Normanno N. Bioinformatics: From NGS Data to Biological Complexity in Variant Detection and Oncological Clinical Practice. Biomedicines 2022; 10:biomedicines10092074. [PMID: 36140175 PMCID: PMC9495893 DOI: 10.3390/biomedicines10092074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/22/2022] Open
Abstract
The use of next-generation sequencing (NGS) techniques for variant detection has become increasingly important in clinical research and in clinical practice in oncology. Many cancer patients are currently being treated in clinical practice or in clinical trials with drugs directed against specific genomic alterations. In this scenario, the development of reliable and reproducible bioinformatics tools is essential to derive information on the molecular characteristics of each patient’s tumor from the NGS data. The development of bioinformatics pipelines based on the use of machine learning and statistical methods is even more relevant for the determination of complex biomarkers. In this review, we describe some important technologies, computational algorithms and models that can be applied to NGS data from Whole Genome to Targeted Sequencing, to address the problem of finding complex cancer-associated biomarkers. In addition, we explore the future perspectives and challenges faced by bioinformatics for precision medicine both at a molecular and clinical level, with a focus on an emerging complex biomarker such as homologous recombination deficiency (HRD).
Collapse
Affiliation(s)
- Serena Dotolo
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Riziero Esposito Abate
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Cristin Roma
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
| | - Davide Guido
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Alessia Preziosi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Beatrice Tropea
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Fernando Palluzzi
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Luciano Giacò
- Bioinformatics Research Core Facility, Gemelli Science and Technology Park (GSTeP), Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli, 8, 00168 Rome, Italy
| | - Nicola Normanno
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
Hanczar B, Bourgeais V, Zehraoui F. Assessment of deep learning and transfer learning for cancer prediction based on gene expression data. BMC Bioinformatics 2022; 23:262. [PMID: 35786378 PMCID: PMC9250744 DOI: 10.1186/s12859-022-04807-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Machine learning is now a standard tool for cancer prediction based on gene expression data. However, deep learning is still new for this task, and there is no clear consensus about its performance and utility. Few experimental works have evaluated deep neural networks and compared them with state-of-the-art machine learning. Moreover, their conclusions are not consistent. RESULTS We extensively evaluate the deep learning approach on 22 cancer prediction tasks based on gene expression data. We measure the impact of the main hyper-parameters and compare the performances of neural networks with the state-of-the-art. We also investigate the effectiveness of several transfer learning schemes in different experimental setups. CONCLUSION Based on our experimentations, we provide several recommendations to optimize the construction and training of a neural network model. We show that neural networks outperform the state-of-the-art methods only for very large training set size. For a small training set, we show that transfer learning is possible and may strongly improve the model performance in some cases.
Collapse
Affiliation(s)
- Blaise Hanczar
- IBISC, Université Paris-Saclay (Univ. Evry), 23 boulevard de France, 91034, Evry, France.
| | - Victoria Bourgeais
- IBISC, Université Paris-Saclay (Univ. Evry), 23 boulevard de France, 91034, Evry, France
| | - Farida Zehraoui
- IBISC, Université Paris-Saclay (Univ. Evry), 23 boulevard de France, 91034, Evry, France
| |
Collapse
|