1
|
Gučević J, Vasović Šimšić O, Delčev S, Kuburić M. Testing of Homogeneity of Coordinates of Various Permanent GNSS Reference Stations Networks of the Republic of Serbia According to the Common Requirements for Proving Competence. SENSORS (BASEL, SWITZERLAND) 2022; 22:7867. [PMID: 36298218 PMCID: PMC9612335 DOI: 10.3390/s22207867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The validity of the results obtained within different permanent GNSS reference station networks (GNSS Network) must be periodically controlled using criteria that are generally known from statistical analyzes or prescribed by International Standards. Procedures for evaluating the uncertainty of measurements are defined in accordance with the purpose of the GNSS Network. The authors of this paper want to point out the need to establish requirements for periodical and systematical control of GNSS coordinates within the same permanent GNSS Network and control of GNSS coordinates between different permanent GNSS Networks measured on the same/unique point on the ground. This paper presents control procedures for three permanent GNSS reference station Networks established and operating in the Republic of Serbia. Special attention is on the analysis of data consistency within one permanent GNSS Network and the mutual consistency of GNSS data between different networks. The paper aims to promote reliance on the different GNSS Networks and contains suggestions on how GNSS Networks may prove that they are performing competently and that they can provide valid results for field measurements. Particularly highlighted is the need to plan and implement measures related to increasing the effectiveness of the GNSS system, achieving improved results, and preventing negative effects while performing field measurements. The paper presents the results for comparison, selected according to the rules for creating a Digital Cadastral Map features, i.e., points, lines, and polygon. The results for comparing point features are the GNSS coordinates. The results for comparing line features are the lengths of the line, i.e., distances, and the results for comparing polygon features are the areas of the polygons.
Collapse
Affiliation(s)
- Jelena Gučević
- Faculty of Civil Engineering Subotica, University of Novi Sad, 24000 Subotica, Serbia
| | - Olivera Vasović Šimšić
- Department School of Civil Engineering and Geodesy of Applied Studies, Academy of Technical and Art Applied Studies Belgrade, 11000 Belgrade, Serbia
| | - Siniša Delčev
- Faculty of Civil Engineering Subotica, University of Novi Sad, 24000 Subotica, Serbia
| | - Miroslav Kuburić
- Faculty of Civil Engineering Subotica, University of Novi Sad, 24000 Subotica, Serbia
| |
Collapse
|
2
|
A Comprehensive Analysis of Environmental Loading Effects on Vertical GPS Time Series in Yunnan, Southwest China. REMOTE SENSING 2022. [DOI: 10.3390/rs14122741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Seasonal variations in the vertical Global Positioning System (GPS) time series are mainly caused by environmental loading, e.g., hydrological loading (HYDL), atmospheric loading (ATML), and nontidal oceanic loading (NTOL), which can be synthesized based on models developed by various institutions. A comprehensive comparison among these models is essential to extract reliable vertical deformation data, especially on a regional scale. In this study, we selected 4 HYDL, 5 ATML, 2 NTOL, and their 40 combined products to investigate their effects on seasonal variations in vertical GPS time series at 27 GPS stations in Yunnan, southwest China. These products were provided by the German Research Center for Geosciences (GFZ), School and Observatory of Earth Sciences (EOST), and International Mass Loading Service (IMLS). Furthermore, we used the Cross Wavelet Transform (XWT) method to analyze the relative phase relationship between the GPS and the environmental loading time series. Our result showed that the largest average Root-Mean-Square (RMS) reduction value was 1.32 mm after removing the deformation associated with 4 HYDL from the vertical GPS time series, whereas the RMS reductions after 5 ATML and 2 NTOL model corrections were negative at most stations in Yunnan. The average RMS reduction value of the optimal combination of environmental loading products was 1.24 mm, which was worse than the HYDL (IMLS_GEOSFPIT)-only correction, indicating that HYDL was the main factor responding for seasonal variations at most stations in Yunnan. The XWT result showed that HYDL also explained the annual variations reasonably. Our finding implies that HYDL (IMLS_GEOSFPIT) contributes the most to the environmental loading in Yunnan, and that the ATML and NTOL models used in this paper cannot be effective to correct seasonal variations.
Collapse
|
3
|
Analysis and Discussion on the Optimal Noise Model of Global GNSS Long-Term Coordinate Series Considering Hydrological Loading. REMOTE SENSING 2021. [DOI: 10.3390/rs13030431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The displacement of Global Navigation Satellite System (GNSS) station contains the information of surface elastic deformation caused by the variation of land water reserves. This paper selects the long-term coordinate series data of 671 International GNSS Service (IGS) reference stations distributed globally under the framework of World Geodetic System 1984 (WGS84) from 2000 to 2021. Different noise model combinations are used for noise analysis, and the optimal noise model for each station before and after hydrologic loading correction is calculated. The results show that the noise models of global IGS reference stations are diverse, and each component has different optimal noise model characteristics, mainly white noise + flicker noise (WN+FN), generalized Gauss–Markov noise (GGM) and white noise + power law noise (WN+PL). Through specific analysis between the optimal noise model and the time series velocity of the station, it is found that the maximum influence value of the vertical velocity can reach 1.8 mm when hydrological loading is considered. Different complex noise models also have a certain influence on the linear velocity and velocity uncertainty of the station. Among them, the influence of white noise + random walking noise is relatively obvious, and its maximum influence value in the elevation direction can reach over 2 mm/year. When studying the impact of hydrological loading correction on the periodicity of the coordinate series, it is concluded whether the hydrological loading is calculated or not, and the GNSS long-term coordinate series has obvious annual and semi-annual amplitude changes, which are most obvious in the vertical direction, up to 16.48 mm.
Collapse
|
4
|
Comparative Analysis of the Effect of the Loading Series from GFZ and EOST on Long-Term GPS Height Time Series. REMOTE SENSING 2020. [DOI: 10.3390/rs12172822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to investigate the effect of different loading models on the nonlinear variations in Global Positioning System (GPS) height time series, the characteristics of annual signals (amplitude and phase) of GPS time series, loading series from Deutsche GeoForschungsZentrum, Germany (GFZ) and School and Observatory of Earth Sciences, France (EOST) at 633 global GPS stations are processed and analyzed. The change characteristics of the root mean square (RMS) reduction rate, annual amplitude and phase of GPS time series after environmental loading corrections (ELCs) are then detected. Results show that ELCs have a positive effect on the reduction in the nonlinear deformation contained in most GPS stations around the world. RMS reduction rates are positive at 82.6% stations after GFZ correction and 87.4% after EOST correction, and the average reduction rates of all stations are 10.6% and 15.4%, respectively. As for the environmental loading series from GFZ and EOST, their average annual amplitudes are 2.7 and 3.1 mm, which explains ~40% annual amplitude of GPS height time series (7.2 mm). Further analysis of some specific stations indicates that the annual phase difference between GPS height time series and the environmental loading series is an important reason that affects the reduction rates of the RMS and annual amplitude. The linear relationship between the annual phase difference and the annual amplitude reduction rate is significant. The linear fitting results show that when there is no annual phase difference between GPS and loading series, the reduction rates of the RMS and annual amplitude will increase to the maximum of 15.6% and 41.6% for GFZ, and 22.0% and 46.6% for EOST.
Collapse
|
5
|
Quantitative Evaluation of Environmental Loading Induced Displacement Products for Correcting GNSS Time Series in CMONOC. REMOTE SENSING 2020. [DOI: 10.3390/rs12040594] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mass redistribution within the Earth system deforms the surface elastically. Loading theory allows us to predict loading induced displacement anywhere on the Earth’s surface using environmental loading models, e.g., Global Land Data Assimilation System. In addition, different publicly available loading products are available. However, there are differences among those products and the differences among the combinations of loading models cannot be ignored when precisions of better than 1 cm are required. Many scholars have applied these loading corrections to Global Navigation Satellite System (GNSS) time series from mainland China without considering or discussing the differences between the available models. Evaluating the effects of different loading products over this region is of paramount importance for accurately removing the loading signal. In this study, we investigate the performance of these different publicly available loading products on the scatter of GNSS time series from the Crustal Movement Observation Network of China. We concentrate on five different continental water storage loading models, six different non-tidal atmospheric loading models, and five different non-tidal oceanic loading models. We also investigate all the different combinations of loading products. The results show that the difference in RMS reduction can reach 20% in the vertical component depending on the loading correction applied. We then discuss the performance of different loading combinations and their effects on the noise characteristics of GNSS height time series and horizontal velocities. The results show that the loading products from NASA may be the best choice for corrections in mainland China. This conclusion could serve as an important reference for loading products users in this region.
Collapse
|
6
|
Common Mode Component and Its Potential Effect on GPS-Inferred Three-Dimensional Crustal Deformations in the Eastern Tibetan Plateau. REMOTE SENSING 2019. [DOI: 10.3390/rs11171975] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface and deep potential geophysical signals respond to the spatial redistribution of global mass variations, which may be monitored by geodetic observations. In this study, we analyze dense Global Positioning System (GPS) time series in the Eastern Tibetan Plateau using principal component analysis (PCA) and wavelet time-frequency spectra. The oscillations of interannual and residual signals are clearly identified in the common mode component (CMC) decomposed from the dense GPS time series from 2000 to 2018. The newly developed spherical harmonic coefficients of the Gravity Recovery and Climate Experiment Release-06 (GRACE RL06) are adopted to estimate the seasonal and interannual patterns in this region, revealing hydrologic and atmospheric/nontidal ocean loads. We stack the averaged elastic GRACE-derived loading displacements to identify the potential physical significance of the CMC in the GPS time series. Interannual nonlinear signals with a period of ~3 to ~4 years in the CMC (the scaled principal components from PC1 to PC3) are found to be predominantly related to hydrologic loading displacements, which respond to signals (El Niño/La Niña) of global climate change. We find an obvious signal with a period of ~6 yr on the vertical component that could be caused by mantle-inner core gravity coupling. Moreover, we evaluate the CMC’s effect on the GPS-derived velocities and confirm that removing the CMC can improve the recognition of nontectonic crustal deformation, especially on the vertical component. Furthermore, the effects of the CMC on the three-dimensional velocity and uncertainty are presented to reveal the significant crustal deformation and dynamic processes of the Eastern Tibetan Plateau.
Collapse
|
7
|
A Sub-Regional Extraction Method of Common Mode Components from IGS and CMONOC Stations in China. REMOTE SENSING 2019. [DOI: 10.3390/rs11111389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is always a need to extract more accurate regional common mode component (CMC) series from coordinate time series of Global Positioning System (GPS) stations, which would be of great benefit to describe the deformation features of the Earth’s surface with more reliability. For this purpose, this paper combines all 11 International Global Navigation Satellite System (GNSS) Service (IGS) stations in China with over 70 stations selected from the Crustal Movement Observation Network of China (CMONOC) to compute CMC series of IGS stations by using a principal component analysis (PCA) method under cases of one whole region and eight sub-regions. The comparison results show that the percentage of first-order principal component (PC1) in North, East and Up components increase by 10.8%, 16.1% and 25.1%, respectively, after dividing the whole China region into eight sub-regions. Meanwhile, Root Mean Square (RMS) reduction rates of residual series that have removed CMC also improve obviously after partitioning. In addition, we compute displacements of these IGS stations caused by environmental loadings (including atmospheric pressure loading, non-tidal oceanic loading and hydrological loading) to analyze their contributions to the non-linear variation in GPS coordinate time series. The comparison result shows that the method we raise, PCA filtering in sub-regions, performs better than the environmental loading corrections (ELCs) in improving the signal-to-noise ratio (SNR) of GPS coordinate time series. This paper raises new criteria for selecting appropriate CMONOC stations around IGS stations when computing sub-regional CMC, involving three criteria of interstation distance, geology and self-condition of stations themselves. According to experiments, these criteria are implemental and effective in selecting suitable stations, by which to extract sub-regional CMC with higher accuracy.
Collapse
|
8
|
Effects of Spatiotemporal Filtering on the Periodic Signals and Noise in the GPS Position Time Series of the Crustal Movement Observation Network of China. REMOTE SENSING 2018. [DOI: 10.3390/rs10091472] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Analysis of Global Positioning System (GPS) position time series and its common mode components (CMC) is very important for the investigation of GPS technique error, the evaluation of environmental loading effects, and the estimation of a realistic and unbiased GPS velocity field for geodynamic applications. In this paper, we homogeneously processed the daily observations of 231 Crustal Movement Observation Network of China (CMONOC) Continuous GPS stations to obtain their position time series. Then, we filtered out the CMC and evaluated its effects on the periodic signals and noise for the CMONOC time series. Results show that, with CMC filtering, peaks in the stacked power spectra can be reduced at draconitic harmonics up to the 14th, supporting the point that the draconitic signal is spatially correlated. With the colored noise suppressed by CMC filtering, the velocity uncertainty estimates for both of the two subnetworks, CMONOC-I (≈16.5 years) and CMONOC-II (≈4.6 years), are reduced significantly. However, the CMONOC-II stations obtain greater reduction ratios in velocity uncertainty estimates with average values of 33%, 38%, and 54% for the north, east, and up components. These results indicate that CMC filtering can suppress the colored noise amplitudes and improve the precision of velocity estimates. Therefore, a unified, realistic, and three-dimensional CMONOC GPS velocity field estimated with the consideration of colored noise is given. Furthermore, contributions of environmental loading to the vertical CMC are also investigated and discussed. We find that the vertical CMC are reduced at 224 of the 231 CMONOC stations and 170 of them are with a root mean square (RMS) reduction ratio of CMC larger than 10%, confirming that environmental loading is one of the sources of CMC for the CMONOC height time series.
Collapse
|