1
|
An Improved Generalized Hierarchical Estimation Framework with Geostatistics for Mapping Forest Parameters and Its Uncertainty: A Case Study of Forest Canopy Height. REMOTE SENSING 2022. [DOI: 10.3390/rs14030568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Forest canopy height is an essential parameter in estimating forest aboveground biomass (AGB), growing stock volume (GSV), and carbon storage, and it can provide necessary information in forest management activities. Light direction and ranging (LiDAR) is widely used for estimating canopy height. Considering the high cost of acquiring LiDAR data over large areas, we took a two-stage up-scaling approach in estimating forest canopy height and aimed to develop a method for quantifying the uncertainty of the estimation result. Based on the generalized hierarchical model-based (GHMB) estimation framework, a new estimation framework named RK-GHMB that makes use of a geostatistical method (regression kriging, RK) was developed. In this framework, the wall-to-wall forest canopy height and corresponding uncertainty in map unit scale are generated. This study was carried out by integrating plot data, sampled airborne LiDAR data, and wall-to-wall Ziyuan-3 satellite (ZY3) stereo images. The result shows that RK-GHMB can obtain a similar estimation accuracy (r = 0.92, MAE = 1.50 m) to GHMB (r = 0.92, MAE = 1.52 m) with plot-based reference data. For LiDAR-based reference data, the accuracy of RK-GHMB (r = 0.78, MAE = 1.75 m) is higher than that of GHMB (r = 0.75, MAE = 1.85 m). The uncertainties for all map units range from 1.54 to 3.60 m for the RK-GHMB results. The values change between 1.84 and 3.60 m for GHMB. This study demonstrates that this two-stage up-scaling approach can be used to monitor forest canopy height. The proposed RK-GHMB approach considers the spatial autocorrelation of neighboring data in the second modeling stage and can achieve a higher accuracy.
Collapse
|
2
|
Prediction of Forest Aboveground Biomass Using Multitemporal Multispectral Remote Sensing Data. REMOTE SENSING 2021. [DOI: 10.3390/rs13071282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forest aboveground biomass (AGB) is a prime forest parameter that requires global level estimates to study the global carbon cycle. Light detection and ranging (LiDAR) is the state-of-the-art technology for AGB prediction but it is expensive, and its coverage is restricted to small areas. On the contrary, spaceborne Earth observation data are effective and economical information sources to estimate and monitor AGB at a large scale. In this paper, we present a study on the use of different spaceborne multispectral remote sensing data for the prediction of forest AGB. The objective is to evaluate the effects of temporal, spectral, and spatial capacities of multispectral satellite data for AGB prediction. The study was performed on multispectral data acquired by Sentinel-2, RapidEye, and Dove satellites which are characterized by different spatial resolutions, temporal availability, and number of spectral bands. A systematic process of least absolute shrinkage and selection operator (lasso) variable selection generalized linear modeling, leave-one-out cross-validation, and analysis was accomplished on each satellite dataset for AGB prediction. Results point out that the multitemporal data based AGB models were more effective in prediction than the single-time models. In addition, red-edge and short wave infrared (SWIR) channel dependent variables showed significant improvement in the modeling results and contributed to more than 50% of the selected variables. Results also suggest that high spatial resolution plays a smaller role than spectral and temporal information in the prediction of AGB. The overall analysis emphasizes a good potential of spaceborne multispectral data for developing sophisticated methods for AGB prediction especially with specific spectral channels and temporal information.
Collapse
|
3
|
Regional Modeling of Forest Fuels and Structural Attributes Using Airborne Laser Scanning Data in Oregon. REMOTE SENSING 2021. [DOI: 10.3390/rs13020261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Airborne laser scanning (ALS) acquisitions provide piecemeal coverage across the western US, as collections are organized by local managers of individual project areas. In this study, we analyze different factors that can contribute to developing a regional strategy to use information from completed ALS data acquisitions and develop maps of multiple forest attributes in new ALS project areas in a rapid manner. This study is located in Oregon, USA, and analyzes six forest structural attributes for differences between: (1) synthetic (i.e., not-calibrated), and calibrated predictions, (2) parametric linear and semiparametric models, and (3) models developed with predictors computed for point clouds enclosed in the areas where field measurements were taken, i.e., “point-cloud predictors”, and models developed using predictors extracted from pre-rasterized layers, i.e., “rasterized predictors”. Forest structural attributes under consideration are aboveground biomass, downed woody biomass, canopy bulk density, canopy height, canopy base height, and canopy fuel load. Results from our study indicate that semiparametric models perform better than parametric models if no calibration is performed. However, the effect of the calibration is substantial in reducing the bias of parametric models but minimal for the semiparametric models and, once calibrations are performed, differences between parametric and semiparametric models become negligible for all responses. In addition, minimal differences between models using point-cloud predictors and models using rasterized predictors were found. We conclude that the approach that applies semiparametric models and rasterized predictors, which represents the easiest workflow and leads to the most rapid results, is justified with little loss in accuracy or precision even if no calibration is performed.
Collapse
|
4
|
Mapping Aboveground Woody Biomass on Abandoned Agricultural Land Based on Airborne Laser Scanning Data. REMOTE SENSING 2020. [DOI: 10.3390/rs12244189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mapping aboveground woody biomass (AGB) on abandoned agricultural land (AAL) is required by relevant stakeholders to monitor the spatial dynamics of farmland afforestation, to assess the carbon sequestration, and to set the appropriate management of natural resources. The objective of this study was, therefore, to present and assess a workflow consisting of (1) the spatial identification of AAL based on a combination of airborne laser scanning (ALS) data, cadastral data, and Land Parcel Identification System data, and (2) the prediction of AGB on AAL using an area-based approach and a nonparametric random forest (RF) model based on a combination of field and ALS data. Part of the second objective was also to evaluate the applicability of (1) the author-developed algorithm for the calculation of ALS metrics and (2) a single comprehensive RF model for the whole area of interest. The study was conducted in the forest management unit Vígľaš (Slovakia, Central Europe) covering a total area of 12,472 ha. Specifically, five reference areas consisting of 11,194 reference points were used to assess the accuracy of the spatial identification of AAL, and seventy-five ground reference plots were used for the development of the ALS-based AGB model and for assessing the accuracy of the AGB map. The overall accuracy of the spatial identification of AAL was found to be 93.00% (Cohen’s kappa = 0.82). The difference between ALS-predicted and ground-observed AGB reached a relative root mean square error (RMSE) at 26.1%, 33.1%, and 21.3% for the whole sample size, plots dominated by shrub species, and plots dominated by tree species, respectively.
Collapse
|
5
|
Abstract
Forest biomass quantification is essential to the global carbon cycle and climate studies. Many studies have estimated forest biomass from a variety of data sources, and consequently generated some regional and global maps. However, these forest biomass maps are not well known and evaluated. In this paper, we reviewed an extensive list of currently available forest biomass maps. For each map, we briefly introduced the data sources, the algorithms used, and the associated uncertainties. Large-scale biomass datasets were compared across Europe, the conterminous United States, Southeast Asia, tropical Africa and South America. Results showed that these forest biomass datasets were almost entirely inconsistent, particularly in woody savannas and savannas across these regions. The uncertainties in biomass maps could be from a variety of sources including the chosen allometric equations used to calculate field data, the choice and quality of remotely sensed data, as well as the algorithms to map forest biomass or extrapolation techniques, but these uncertainties have not been fully quantified. We suggested the future directions for generating more accurate large-scale forest biomass maps should concentrate on the compilation of field biomass data, novel approaches of forest biomass mapping, and comprehensively addressing the accuracy of generated biomass maps.
Collapse
|
6
|
Estimating Forest Volume and Biomass and Their Changes Using Random Forests and Remotely Sensed Data. REMOTE SENSING 2019. [DOI: 10.3390/rs11161944] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the popularity of random forests (RF) as a prediction algorithm, methods for constructing confidence intervals for population means using this technique are still only sparsely reported. For two regional study areas (Spain and Norway) RF was used to predict forest volume or aboveground biomass using remotely sensed auxiliary data obtained from multiple sensors. Additionally, the changes per unit area of these forest attributes were estimated using indirect and direct methods. Multiple inferential frameworks have attracted increased recent attention for estimating the variances required for confidence intervals. For this study, three different statistical frameworks, design-based expansion, model-assisted and model-based estimators, were used for estimating population parameters and their variances. Pairs and wild bootstrapping approaches at different levels were compared for estimating the variances of the model-based estimates of the population means, as well as for mapping the uncertainty of the change predictions. The RF models accurately represented the relationship between the response and remotely sensed predictor variables, resulting in increased precision for estimates of the population means relative to design-based expansion estimates. Standard errors based on pairs bootstrapping within or internal to RF were considerably larger than standard errors based on both pairs and wild external bootstrapping of the entire RF algorithm. Pairs and wild external bootstrapping produced similar standard errors, but wild bootstrapping better mimicked the original structure of the sample data and better preserved the ranges of the predictor variables.
Collapse
|
7
|
Multi-Scale Remote Sensing-Assisted Forest Inventory: A Glimpse of the State-of-the-Art and Future Prospects. REMOTE SENSING 2019. [DOI: 10.3390/rs11111260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Advances in remote inventory and analysis of forest resources during the last decade have reached a level to be now considered as a crucial complement, if not a surrogate, to the long-existing field-based methods. This is mostly reflected in not only the use of multiple-band new active and passive remote sensing data for forest inventory, but also in the methodic and algorithmic developments and/or adoptions that aim at maximizing the predictive or calibration performances, thereby minimizing both random and systematic errors, in particular for multi-scale spatial domains. With this in mind, this editorial note wraps up the recently-published Remote Sensing special issue “Remote Sensing-Based Forest Inventories from Landscape to Global Scale”, which hosted a set of state-of-the-art experiments on remotely sensed inventory of forest resources conducted by a number of prominent researchers worldwide.
Collapse
|