1
|
Yousefi R, Wang F, Shaheen A, Ge Q, Kaveh-Firouz A, Kaskaoutis DG, Arshad A. Long-term perspectives on land-use changes and air pollution policies in Iran: A comparative analysis of regional and global patterns in atmospheric PM 2.5. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124346. [PMID: 39892257 DOI: 10.1016/j.jenvman.2025.124346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Fine particulate matter (PM2.5) pollution is a major environmental challenge across the Middle East, including Iran. However, a substantial lack of knowledge exists regarding the linkage between aerosol trends, specific compounds, and their interrelation with emissions, mitigation strategies, and land changes. This research comprehensively evaluates the spatiotemporal trends of PM2.5 and its main precursors (SO2 and BC) concentrations in relation to LULC (Land-Use and Land-Cover) changes and mitigation policies in Iran during 1980-2023. Surface PM2.5 concentrations were estimated using five monthly MERRA-2 simulation datasets, including sea salt2.5, dust2.5, BC, OC, and SO4. The Evaluation of MERRA-2 PM2.5 against ground-based measurements confirmed that the MERRA-2 reanalysis data is ideal for monitoring PM2.5 patterns in Iran. Our trend analysis showed that dust dominates high PM2.5 concentrations in southwestern and southeastern Iran during summer, while anthropogenic aerosols (SO2 and BC) are the most significant contributors to PM2.5 in urban areas like Tehran in winter. Overall, a significant rise in aerosol occurred over Iran during 1980-2023, which reversed to a decreasing trend in PM2.5, BC and SO2 around 2006-2010. At the regional scale, aerosols variations were influenced by land-use changes, while urban and agricultural LULC changes being the primary contributors in dust-dominant regions, accounting for 38.1% and 26.4% of the variation, respectively. Our findings indicate that, although land-use changes initially influenced air pollution trends, recent clean-air policies have been essential in reducing emissions across major urban centers. Additionally, these trends in Iran align with or diverge from global patterns, reflecting the rise in industrial emissions across South Asia and contrasting with policy-driven decreases in developed regions such as Europe and North America, highlighting the urgent need for effective policies and land management to mitigate urban air pollution from diverse aerosol sources.
Collapse
Affiliation(s)
- Robabeh Yousefi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Abdallah Shaheen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Amaneh Kaveh-Firouz
- Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Dimitris G Kaskaoutis
- Department of Chemical Engineering, University of Western Macedonia, Kozani, 50100, Greece; Collaborative Researcher, Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, Greece
| | - Arfan Arshad
- Department of Biosystems Engineering, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
2
|
Ahrari A, Panchanathan A, Torabi Haghighi A. Dust over water: Analyzing the impact of lake desiccation on dust storms on the Iranian Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136377. [PMID: 39500190 DOI: 10.1016/j.jhazmat.2024.136377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 12/01/2024]
Abstract
The desiccation of lakes on the Iranian Plateau, driven by both natural processes and anthropogenic activities, has led to significant land cover changes, exposing lake beds and triggering adverse environmental consequences. These transformations pose serious threats to ecological conditions and the provision of ecosystem services. This study investigates the potential links between lake desiccation and the occurrence of dust storms across major lakes on the Iranian Plateau. By utilizing remote sensing data and time series statistical analysis, including the Mann-Kendall test, Ordinary Least Square (OLS) regression, and frequency analysis, we assessed changes in lake extent and their effects on Aerosol Optical Depth (AOD) and Particular Matter (PM2.5) from 1985 to 2020. An analysis of Landsat imagery reveals that lake desiccation commenced in the late 1990s, exhibiting a marked downward trend that has intensified in recent years. The results show a significant inverse correlation between aerosol parameters (AOD and PM2.5) and lake extent. Reduced lake area is associated with elevated AOD and PM2.5 concentrations, with the highest aerosol levels observed when lakes reach their smallest extent. Notably, despite an 81 % reduction in the lake area, dust storm occurrences have increased by 20%. These findings highlight the critical role of lake desiccation in exacerbating dust storms in the surrounding regions. Furthermore, the temporal alignment between fluctuations in lake extent and dust storm frequency is validated through regression analysis with a 95 % confidence level. The consistency between our results and existing literature underscores the reliability of the observed relationship, emphasizing the urgent need to address the environmental consequences of lake desiccation to mitigate its broader ecological impacts and potential human health impacts. Graphical Abstract.
Collapse
Affiliation(s)
- Amirhossein Ahrari
- Water, Energy, and Environmental Engineering Research Unit, University of Oulu, Finland.
| | | | - Ali Torabi Haghighi
- Water, Energy, and Environmental Engineering Research Unit, University of Oulu, Finland
| |
Collapse
|
3
|
Yousefi R, Shaheen A, Wang F, Ge Q, Wu R, Lelieveld J, Wang J, Su X. Fine particulate matter (PM2.5) trends from land surface changes and air pollution policies in China during 1980-2020. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116847. [PMID: 36436250 DOI: 10.1016/j.jenvman.2022.116847] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
High levels of fine particulate matter (PM2.5) pose a severe air pollution challenge in China. Both land use changes and anthropogenic emissions can affect PM2.5 concentrations. Only a few studies have addressed the long-term impact of land surface changes on PM2.5 in China. We conducted a comprehensive analysis of PM2.5 trends over China using the Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2) during 1980-2020. The monthly mean PM2.5 concentrations of MERRA-2 were evaluated across mainland China against independent surface measurements from 2013 to 2020, showing a good agreement. For the trend analysis, China was subdivided into six regions based on land use and ambient aerosols types. Our results indicate an overall significant PM2.5 increase over China during 1980-2020 with major changes in-between. Notwithstanding continued urbanization and associated anthropogenic activities, the PM2.5 reversed to a downward trend around 2007 over most regions except for the part of China that is most affected by desert dust. Statistical analysis suggests that PM2.5 trends during 1980-2010 were associated with urban expansion and deforestation over eastern and southern China. The trend reversal around 2007 is mainly attributed to Chinese air pollution control measures. A multiple linear regression analysis reveals that PM2.5 variability is linked to soil moisture and vegetation. Our results suggest that land use and land cover changes as well as pollution controls strongly influenced PM2.5 trends and that drought conditions affect PM2.5 particularly over desert and forest regions of China. This work contributes to a better understanding of the changes in PM2.5 over China.
Collapse
Affiliation(s)
- Robabeh Yousefi
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Abdallah Shaheen
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Fang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.
| | - Quansheng Ge
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Renguang Wu
- School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Jos Lelieveld
- Department of Atmospheric Chemistry, Max Planck Institute for Chemistry, Mainz, Germany; Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - Xiaokang Su
- College of Resource Environment and Tourism, Capital Normal University, Beijing, China
| |
Collapse
|
4
|
Variation and Driving Factor of Aerosol Optical Depth over the South China Sea from 1980 to 2020. ATMOSPHERE 2022. [DOI: 10.3390/atmos13030372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Spatial and temporal variation of aerosol optical depth (AOD) and optical depth of different aerosol types derived from the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) over the South China Sea (SCS) between 1980 and 2020 were studied. AOD distribution showed different characteristics throughout the entire SCS. Sulfate Aerosol Optical Depth (SO4AOD) and Sea Salt Aerosol Optical Depth (SSAOD) mainly contributed to the spatial and temporal variation of AOD over the SCS. A significant increasing trend followed by a decreasing trend of AOD could be observed in the north of the SCS from 1980 to 2020. Mean MERRA-2 AOD between 1980 and 2020 showed that AOD was high in the north and low in the south and that AOD gradually decreased from north to south over the SCS. AOD after 2000 was obviously higher than that of the 1980s and 1990s. Higher AOD appeared in the spring and winter, and low AOD appeared in the summer. The spatial distribution of scattering aerosol optical depth (SAOD) was similar to AOD distribution over the SCS. SO4AOD and SSAOD were obviously higher than black carbon aerosol optical depth (BCAOD), organic carbon aerosol optical depth (OCAOD), and dust aerosol optical depth (DUAOD) over the SCS. SO4AOD accounted for over 50% of total AOD (TAOD) over the north of the SCS, while BCAOD and DUAOD accounted for less than 10% of TAOD over the entire SCS. An obvious annual mean TAOD increase between 1980 and 2007 could be observed over the northern part of the SCS (NSCS), while a TAOD decrease happened from 2008 to 2020 in this region. The correlation coefficient between TAOD and SO4AOD over NSCS from 1980 to 2020 was about 0.93, indicating SO4AOD was the driving factor of TAOD variation in this area. Different AOD variation trends over the different areas of the SCS could be observed during the two periods including 1980–2007 and 2008–2020. AOD increase appeared over most of the SCS during the period from 1980 to 2007, while AOD decrease could be observed over most of the SCS from 2008 to 2020.
Collapse
|
5
|
Long-Term Variability of Dust Events in Southwestern Iran and Its Relationship with the Drought. ATMOSPHERE 2021. [DOI: 10.3390/atmos12101350] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dust storms represent a major environmental challenge in the Middle East. The southwest part of Iran is highly affected by dust events transported from neighboring desert regions, mostly from the Iraqi plains and Saudi Arabia, as well as from local dust storms. This study analyzes the spatio-temporal distribution of dust days at five meteorological stations located in southwestern Iran covering a period of 22 years (from 1997 to 2018). Dust codes (06, 07, 30 to 35) from meteorological observations are analyzed at each station, indicating that 84% of the dust events are not of local origin. The average number of dust days maximizes in June and July (188 and 193, respectively), while the dust activity weakens after August. The dust events exhibit large inter-annual variability, with statistically significant increasing trends in all of five stations. Spatial distributions of the aerosol optical depth (AOD), dust loading, and surface dust concentrations from a moderate resolution imaging spectroradiometer (MODIS) and Modern-Era Retrospective analysis for Research and Applications (MERRA-2) retrievals reveal high dust accumulation over southwest Iran and surrounding regions. Furthermore, the spatial distribution of the (MODIS)-AOD trend (%) over southwest Iran indicates a large spatial heterogeneity during 2000–2018 with trends ranging mostly between −9% and 9% (not statistically significant). 2009 was the most active dust year, followed by 2011 and 2008, due to prolonged drought conditions in the fertile crescent and the enhanced dust emissions in the Iraqi plains during this period. In these years, the AOD was much higher than the 19-year average (2000 to 2018), while July 2009 was the dustiest month with about 25–30 dust days in each station. The years with highest dust activity were associated with less precipitation, negative anomalies of the vegetation health index (VHI) and normalized difference vegetation index (NDVI) over the Iraqi plains and southwest Iran, and favorable meteorological dynamics triggering stronger winds.
Collapse
|