1
|
Reda A, El-Safty SA, Selim MM, Shenashen MA. Optical glucose biosensor built-in disposable strips and wearable electronic devices. Biosens Bioelectron 2021; 185:113237. [PMID: 33932881 DOI: 10.1016/j.bios.2021.113237] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/25/2021] [Accepted: 04/06/2021] [Indexed: 01/19/2023]
Abstract
On-demand screening, real-time monitoring and rapid diagnosis of ubiquitous diseases, such as diabetes, at early stages are indispensable in personalised treatment. Emerging impacts of nano/microscale materials on optical and portable biosensor strips and devices have become increasingly important in the remarkable development of sensitive visualisation (i.e. visible inspection by the human eye) assays, low-cost analyses and personalised home testing of patients with diabetes. With the increasing public attention regarding the self-monitoring of diabetes, the development of visual readout, easy-to-use and wearable biosensors has gained considerable interest. Our comprehensive review bridges the practical assessment gap between optical bio-visualisation assays, disposable test strips, sensor array designs and full integration into flexible skin-based or contact lens devices with the on-site wireless signal transmission of glucose detection in physiological fluids. To date, the fully modulated integration of nano/microscale optical biosensors into wearable electronic devices, such as smartphones, is critical to prolong periods of indoor and outdoor clinical diagnostics. Focus should be given to the improvements of invasive, wireless and portable sensing technologies to improve the applicability and reliability of screen display, continuous monitoring, dynamic data visualisation, online acquisition and self and in-home healthcare management of patients with diabetes.
Collapse
Affiliation(s)
- Abdullah Reda
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| | - Sherif A El-Safty
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan.
| | - Mahmoud M Selim
- Prince Sattam Bin Abdulaziz University, P. O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Mohamed A Shenashen
- National Institute for Materials Science (NIMS), Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
| |
Collapse
|
2
|
El-Safty S, Shenashen M. Nanoscale dynamic chemical, biological sensor material designs for control monitoring and early detection of advanced diseases. Mater Today Bio 2020; 5:100044. [PMID: 32181446 PMCID: PMC7066237 DOI: 10.1016/j.mtbio.2020.100044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
Early detection and easy continuous monitoring of emerging or re-emerging infectious, contagious or other diseases are of particular interest for controlling healthcare advances and developing effective medical treatments to reduce the high global cost burden of diseases in the backdrop of lack of awareness regarding advancing diseases. Under an ever-increasing demand for biosensor design reliability for early stage recognition of infectious agents or contagious diseases and potential proteins, nanoscale manufacturing designs had developed effective nanodynamic sensing assays and compact wearable devices. Dynamic developments of biosensor technology are also vital to detect and monitor advanced diseases, such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), diabetes, cancers, liver diseases, cardiovascular diseases (CVDs), tuberculosis, and central nervous system (CNS) disorders. In particular, nanoscale biosensor designs have indispensable contribution to improvement of health concerns by early detection of disease, monitoring ecological and therapeutic agents, and maintaining high safety level in food and cosmetics. This review reports an overview of biosensor designs and their feasibility for early investigation, detection, and quantitative determination of many advanced diseases. Biosensor strategies are highlighted to demonstrate the influence of nanocompact and lightweight designs on accurate analyses and inexpensive sensing assays. To date, the effective and foremost developments in various nanodynamic designs associated with simple analytical facilities and procedures remain challenging. Given the wide evolution of biosensor market requirements and the growing demand in the creation of early stage and real-time monitoring assays, precise output signals, and easy-to-wear and self-regulating analyses of diseases, innovations in biosensor designs based on novel fabrication of nanostructured platforms with active surface functionalities would produce remarkable biosensor devices. This review offers evidence for researchers and inventors to focus on biosensor challenge and improve fabrication of nanobiosensors to revolutionize consumer and healthcare markets.
Collapse
Affiliation(s)
- S.A. El-Safty
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukubashi, Ibaraki-ken, 305-0047, Japan
| | | |
Collapse
|
3
|
Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A, Manz A, Urban GA, Güder F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806739. [PMID: 31094032 DOI: 10.1002/adma.201806739] [Citation(s) in RCA: 299] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/29/2019] [Indexed: 05/18/2023]
Abstract
Disposable sensors are low-cost and easy-to-use sensing devices intended for short-term or rapid single-point measurements. The growing demand for fast, accessible, and reliable information in a vastly connected world makes disposable sensors increasingly important. The areas of application for such devices are numerous, ranging from pharmaceutical, agricultural, environmental, forensic, and food sciences to wearables and clinical diagnostics, especially in resource-limited settings. The capabilities of disposable sensors can extend beyond measuring traditional physical quantities (for example, temperature or pressure); they can provide critical chemical and biological information (chemo- and biosensors) that can be digitized and made available to users and centralized/decentralized facilities for data storage, remotely. These features could pave the way for new classes of low-cost systems for health, food, and environmental monitoring that can democratize sensing across the globe. Here, a brief insight into the materials and basics of sensors (methods of transduction, molecular recognition, and amplification) is provided followed by a comprehensive and critical overview of the disposable sensors currently used for medical diagnostics, food, and environmental analysis. Finally, views on how the field of disposable sensing devices will continue its evolution are discussed, including the future trends, challenges, and opportunities.
Collapse
Affiliation(s)
- Can Dincer
- Department of Bioengineering, Imperial College London, Royal School of Mines, SW7 2AZ, London, UK
- University of Freiburg, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), 79110, Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Richard Bruch
- University of Freiburg, Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), 79110, Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
| | - Estefanía Costa-Rama
- REQUIMTE/LAQV, Instituto Superior de Engenharia do Porto, 4249-015, Porto, Portugal
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain
| | | | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, 08193, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
| | - Andreas Manz
- Korea Institute of Science and Technology in Europe, 66123, Saarbrücken, Germany
| | - Gerald Anton Urban
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110, Freiburg, Germany
- University of Freiburg, Freiburg Materials Research Center (FMF), 79104, Freiburg, Germany
| | - Firat Güder
- Department of Bioengineering, Imperial College London, Royal School of Mines, SW7 2AZ, London, UK
| |
Collapse
|
4
|
Alhamoud Y, Yang D, Fiati Kenston SS, Liu G, Liu L, Zhou H, Ahmed F, Zhao J. Advances in biosensors for the detection of ochratoxin A: Bio-receptors, nanomaterials, and their applications. Biosens Bioelectron 2019; 141:111418. [PMID: 31228729 DOI: 10.1016/j.bios.2019.111418] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 01/20/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin mainly produced by the genera Aspergillus and Penicillium. OTA can cause various forms of kidney, liver and brain diseases in both humans and animals although trace amount of OTA is normally present in food. Therefore, development of fast and sensitive detection technique is essential for accurate diagnosis of OTA. Currently, the most commonly used detection methods are enzyme-linked immune sorbent assays (ELISA) and chromatographic techniques. These techniques are sensitive but time consuming, and require expensive equipment, highly trained operators, as well as extensive preparation steps. These drawbacks limit their wide application in OTA detection. On the contrary, biosensors hold a great potential for OTA detection at for both research and industry because they are less expensive, rapid, sensitive, specific, simple and portable. This paper aims to provide an extensive overview on biosensors for OTA detection by highlighting the main biosensing recognition elements for OTA, the most commonly used nanomaterials for fabricating the sensing interface, and their applications in different read-out types of biosensors. Current challenges and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Yasmin Alhamoud
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Danting Yang
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia.
| | - Samuel Selorm Fiati Kenston
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Guozhen Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Linyang Liu
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale BioPhotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney, Sydney, 2052, Australia
| | - Haibo Zhou
- Institute of Pharmaceutical Analysis and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine & New Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Fatma Ahmed
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China
| | - Jinshun Zhao
- Department of Preventative Medicine, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang Province, 315211, People's Republic of China.
| |
Collapse
|
5
|
Boobphahom S, Rattanawaleedirojn P, Boonyongmaneerat Y, Rengpipat S, Chailapakul O, Rodthongkum N. TiO2 sol/graphene modified 3D porous Ni foam: A novel platform for enzymatic electrochemical biosensor. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem Rev 2018; 119:3-35. [DOI: 10.1021/acs.chemrev.8b00016] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Shi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Howard E. Katz
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
7
|
Rawson TM, O’Hare D, Herrero P, Sharma S, Moore LSP, de Barra E, Roberts JA, Gordon AC, Hope W, Georgiou P, Cass AEG, Holmes AH. Delivering precision antimicrobial therapy through closed-loop control systems. J Antimicrob Chemother 2018; 73:835-843. [PMID: 29211877 PMCID: PMC5890674 DOI: 10.1093/jac/dkx458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sub-optimal exposure to antimicrobial therapy is associated with poor patient outcomes and the development of antimicrobial resistance. Mechanisms for optimizing the concentration of a drug within the individual patient are under development. However, several barriers remain in realizing true individualization of therapy. These include problems with plasma drug sampling, availability of appropriate assays, and current mechanisms for dose adjustment. Biosensor technology offers a means of providing real-time monitoring of antimicrobials in a minimally invasive fashion. We report the potential for using microneedle biosensor technology as part of closed-loop control systems for the optimization of antimicrobial therapy in individual patients.
Collapse
Affiliation(s)
- T M Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
| | - D O’Hare
- Department of Bioengineering, Imperial College London, London, UK
| | - P Herrero
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - S Sharma
- College of Engineering, Swansea University, Swansea, UK
| | - L S P Moore
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - E de Barra
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| | - J A Roberts
- University of Queensland Centre for Clinical Research, Faculty of Medicine and Centre for Translational Pharmacodynamics, School of Pharmacy, The University of Queensland, Brisbane, Australia
- Royal Brisbane and Women’s Hospital, Brisbane, Australia
| | - A C Gordon
- Section of Anaesthetics, Pain Medicine & Intensive Care, Imperial College London, London, UK
| | - W Hope
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - P Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, UK
| | - A E G Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, Kensington Campus, London, UK
| | - A H Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London, UK
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, UK
| |
Collapse
|
8
|
Rawson TM, Sharma S, Georgiou P, Holmes A, Cass A, O'Hare D. Towards a minimally invasive device for beta-lactam monitoring in humans. Electrochem commun 2017; 82:1-5. [PMID: 31031564 PMCID: PMC6485621 DOI: 10.1016/j.elecom.2017.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance is a leading patient safety issue. There is a need to develop novel mechanisms for monitoring and subsequently improving the precision of how we use antibiotics. A surface modified microneedle array was developed for monitoring beta-lactam antibiotic levels in human interstitial fluid. The sensor was fabricated by anodically electrodepositing iridium oxide (AEIROF) onto a platinum surface on the microneedle followed by fixation of beta-lactamase enzyme within a hydrogel. Calibration of the sensor was performed to penicillin-G in buffer solution (PBS) and artificial interstitial fluid (ISF). Further calibration of a platinum disc electrode was undertaken using amoxicillin and ceftriaxone. Open-circuit potentials were performed and data analysed using the Hill equation and log(concentration [M]) plots. The microneedle sensor demonstrated high reproducibility between penicillin-G runs in PBS with mean Km (±1SD) = 0.0044 ± 0.0013 M and mean slope function of log(concentration plots) 29 ± 1.80 mV/decade (r2=0.933). Response was reproducible after 28 days storage at 4°C. In artificial ISF, the sensors response was Km (±1SD) = 0.0077 ± 0.0187 M and a slope function of 34 ± 1.85 mv/decade (r2=0.995). Our results suggest that microneedle array based beta-lactam sensing may be a future application of this AEIROF based enzymatic sensor.
Collapse
Affiliation(s)
- Timothy Miles Rawson
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London. W12 0NN. United Kingdom
| | - Sanjiv Sharma
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Pantelis Georgiou
- Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom
| | - Alison Holmes
- National Institute for Health Research Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, Hammersmith Campus, Du Cane Road, London. W12 0NN. United Kingdom
- Imperial College Healthcare NHS Trust, Hammersmith Hospital, Du Cane Road, Acton, W12 0NN, United Kingdom
| | - Anthony Cass
- Department of Chemistry & Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Danny O'Hare
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Cánovas R, Parrilla M, Blondeau P, Andrade FJ. A novel wireless paper-based potentiometric platform for monitoring glucose in blood. LAB ON A CHIP 2017; 17:2500-2507. [PMID: 28653727 DOI: 10.1039/c7lc00339k] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A novel low-cost, compact and sensitive paper-based platform for the accurate monitoring of glucose in biological fluids is presented. Paper-based working and reference electrodes are combined to build a whole potentiometric cell, which also fits a sampling module for simple and fast determination of glucose in a single drop of blood. The working electrode is built using a platinized filter paper coated with a Nafion membrane that entraps the enzyme glucose oxidase; the reference electrode is made by casting a polyvinylbutyral-based membrane onto a conductive paper. The system works by detecting the hydrogen peroxide generated as a result of the enzymatic reaction. Selectivity is achieved due to the permselective behaviour of Nafion, while a significant enhancement of the sensitivity is reached by exploiting the Donnan-coupled formal potential. Under optimum conditions, a sensitivity of -95.9 ± 4.8 mV per decade in the 0.3-3 mM range is obtained. Validation of the measurements has been performed against standard methods in human serum and blood. Final integration with a wireless reader allows for truly in situ measurements with a less than 2 minute procedure including a two-point calibration, washing and measurement. This low-cost analytical device opens up new prospects for rapid diagnostic results in non-laboratory settings.
Collapse
Affiliation(s)
- Rocío Cánovas
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Marc Parrilla
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Pascal Blondeau
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| | - Francisco J Andrade
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
10
|
Moghimi N, Rahsepar F, Leung K. Supported binary hybrid nanomaterials and their applications. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Du L, Wang Y, Ren Z, Shen C, Luo G. Preparation of Au Nanocolloids by in Situ Dispersion and Their Applications in Surface-Enhanced Raman Scattering (SERS) Films. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00807] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Le Du
- Beijing
Key Laboratory of Membrane Science and Technology, The State Key Laboratory
of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujun Wang
- Department of Chemical Engineering, The State Key Laboratory of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| | - Zhongqi Ren
- Beijing
Key Laboratory of Membrane Science and Technology, The State Key Laboratory
of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chun Shen
- Beijing Key Laboratory of Bioprocess, College
of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangsheng Luo
- Department of Chemical Engineering, The State Key Laboratory of Chemical
Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Shanmugam NR, Muthukumar S, Selvam AP, Prasad S. Electrochemical nanostructured ZnO biosensor for ultrasensitive detection of cardiac troponin-T. Nanomedicine (Lond) 2016; 11:1345-58. [PMID: 27193337 DOI: 10.2217/nnm-2016-0048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIM Vertically oriented zinc oxide nanostructures based disposable diagnostic biosensor for detecting and quantifying levels of cardiac troponin-T from human serum has been developed. MATERIALS & METHODS The biosensors were designed by integrating hydrothermally grown zinc oxide nanostructures on glass and printed circuit board platforms, resulting in the generation of high-density nanostructure arrays with nanotextured zinc oxide based electrodes. The size, density and surface terminations of the nanostructures were leveraged toward achieving surface confinement of the target cTnT molecules on to the nanostructures. A combination of AC and DC spectroscopy was used to characterize the biosensor response to cTnT. RESULTS & CONCLUSION LOD of 0.1 pg/ml in human serum was achieved.
Collapse
Affiliation(s)
| | | | - Anjan Panneer Selvam
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
13
|
Othman A, Karimi A, Andreescu S. Functional nanostructures for enzyme based biosensors: properties, fabrication and applications. J Mater Chem B 2016; 4:7178-7203. [DOI: 10.1039/c6tb02009g] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A review describing functional nanostructures for portable and printable enzyme biosensors. Specific physicochemical and surface properties of nanoparticles used as carriers and sensing components and their assembly are discussed with an overview of current and emerging techniques enabling large scale roll-to-roll fabrication and miniaturization. Their integration in flexible, wearable and inexpensive point-of-use devices, and implementation challenges are also provided with examples of applications.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Anahita Karimi
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science
- Clarkson University
- Potsdam
- USA
| |
Collapse
|
14
|
Justino CI, Freitas AC, Pereira R, Duarte AC, Rocha Santos TA. Recent developments in recognition elements for chemical sensors and biosensors. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.03.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Pal S, Bhand S. Zinc oxide nanoparticle-enhanced ultrasensitive chemiluminescence immunoassay for the carcinoma embryonic antigen. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1489-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Biomimetic receptors and sensors. SENSORS 2014; 14:22525-31. [PMID: 25436653 PMCID: PMC4299025 DOI: 10.3390/s141222525] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 02/07/2023]
Abstract
In biomimetics, living systems are imitated to develop receptors for ions, molecules and bioparticles. The most pertinent idea is self-organization in analogy to evolution in nature, which created the key-lock principle. Today, modern science has been developing host-guest chemistry, a strategy of supramolecular chemistry for designing interactions of analytes with synthetic receptors. This can be realized, e.g., by self-assembled monolayers (SAMs) or molecular imprinting. The strategies are used for solid phase extraction (SPE), but preferably in developing recognition layers of chemical sensors.
Collapse
|