1
|
Ricardo J, Duarte A, Chiussi S, Martins GV, Moreira FTC. Biomimetic Prussian Blue Sensor for Ultrasensitive Direct Detection of Myoglobin. Polymers (Basel) 2025; 17:630. [PMID: 40076122 PMCID: PMC11902790 DOI: 10.3390/polym17050630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
This research presents a novel, cost-effective, and scalable approach for the direct detection of myoglobin (Myo) in point-of-care (PoC) applications. In this strategy, redox-active Prussian Blue nanocubes (PBNCs) are applied to a disposable platinum screen-printed electrode (Pt-SPE). Subsequently, a biomimetic sensing layer is generated by electropolymerization of ortho-phenylenediamine (o-PD) in the presence of Myo, which forms molecularly imprinted polymer (MIP) sites by cyclic voltammetry (CV). The electropolymerization process takes place in a potential range of -0.2 V to +0.8 V, for five cycles at a scan rate of 50 mV/s, in a 10 mmol/L o-PD solution. After polymerization, the electrode is incubated in trypsin for 2 h to create Myo-specifically imprinted cavities. The structural and morphological properties of the biomimetic layer were analyzed by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The direct detection of Myo was analyzed by differential pulse voltammetry (DPV). The results showed a linear response to Myo concentrations ranging from 1.0 ag/mL to 10 ng/mL, a limit of detection (LOD) of 0.76 ag/mL, and a R2 value of 0.9775. The absence of an external liquid redox probe simplifies the sensor design, improves portability, and reduces the complexity of the assay, making it more suitable for PoC.
Collapse
Affiliation(s)
- Jacinta Ricardo
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Abel Duarte
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | | | - Gabriela V. Martins
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| | - Felismina T. C. Moreira
- CIETI-LabRISE, ISEP, Polytechnic of Porto, R. Dr. António Bernardino de Almeida, 431, 4249-015 Porto, Portugal; (J.R.); (A.D.)
| |
Collapse
|
2
|
Shah N, Shah M, Rehan T, Khan A, Majeed N, Hameed A, Bououdina M, Abumousa RA, Humayun M. Molecularly imprinted polymer composite membranes: From synthesis to diverse applications. Heliyon 2024; 10:e36189. [PMID: 39253174 PMCID: PMC11382202 DOI: 10.1016/j.heliyon.2024.e36189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
This review underscores the fundamentals of MIP-CMs and systematically summarizes their synthetic strategies and applications, and potential developments. MIP-CMs are widely acclaimed for their versatility, finding applications in separation, filtration, detection, and trace analysis, as well as serving as scaffolds in a range of analytical, biomedical and industrial contexts. Also characterized by extraordinary selectivity, remarkable sensitivity, and outstanding capability to bind molecules, those membranes are also cost-effective, highly stable, and configurable in terms of recognition and, therefore, inalienable in various application fields. Issues relating to the potential future for the paper are discussed in the last section with the focus on the improvement of resource practical application across different areas. Hence, this review can be seen as a kind of cookbook for the design and fabrication of MIP-CMs with an intention to expand the scope of their application.
Collapse
Affiliation(s)
- Nasrullah Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Muffarih Shah
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Touseef Rehan
- Department of Biochemistry Women University Mardan, Mardan, 23200, KP, Pakistan
| | - Abbas Khan
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Noor Majeed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Abdul Hameed
- Department of Chemistry Abdul Wali Khan University Mardan, Mardan, 23200, KP, Pakistan
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Rasha A Abumousa
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University Riyadh, 11586, Saudi Arabia
| |
Collapse
|
3
|
Gerdan Z, Saylan Y, Denizli A. Biosensing Platforms for Cardiac Biomarker Detection. ACS OMEGA 2024; 9:9946-9960. [PMID: 38463295 PMCID: PMC10918812 DOI: 10.1021/acsomega.3c06571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/12/2024]
Abstract
Myocardial infarction (MI) is a cardiovascular disease that occurs when there is an elevated demand for myocardial oxygen as a result of the rupture or erosion of atherosclerotic plaques. Globally, the mortality rates associated with MI are steadily on the rise. Traditional diagnostic biomarkers employed in clinical settings for MI diagnosis have various drawbacks, prompting researchers to investigate fast, precise, and highly sensitive biosensor platforms and technologies. Biosensors are analytical devices that combine biological elements with physicochemical transducers to detect and quantify specific compounds or analytes. These devices play a crucial role in various fields including healthcare, environmental monitoring, food safety, and biotechnology. Biosensors developed for the detection of cardiac biomarkers are typically electrochemical, mass, and optical biosensors. Nanomaterials have emerged as revolutionary components in the field of biosensing, offering unique properties that significantly enhance the sensitivity and specificity of the detection systems. This review provides a comprehensive overview of the advancements and applications of nanomaterial-based biosensing systems. Beginning with an exploration of the fundamental principles governing nanomaterials, we delve into their diverse properties, including but not limited to electrical, optical, magnetic, and thermal characteristics. The integration of these nanomaterials as transducers in biosensors has paved the way for unprecedented developments in analytical techniques. Moreover, the principles and types of biosensors and their applications in cardiovascular disease diagnosis are explained in detail. The current biosensors for cardiac biomarker detection are also discussed, with an elaboration of the pros and cons of existing platforms and concluding with future perspectives.
Collapse
Affiliation(s)
- Zeynep Gerdan
- Department
of Biomedical Engineering, Istanbul Beykent
University, Istanbul 34398, Turkey
| | - Yeşeren Saylan
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Adil Denizli
- Department
of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Hasannejad F, Montazeri L, Mano JF, Bonakdar S, Fazilat A. Regulation of cell fate by cell imprinting approach in vitro. BIOIMPACTS : BI 2023; 14:29945. [PMID: 38938752 PMCID: PMC11199935 DOI: 10.34172/bi.2023.29945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-based technologies are widely utilized in various domains such as drug evaluation, toxicity assessment, vaccine and biopharmaceutical development, reproductive technology, and regenerative medicine. It has been demonstrated that pre-adsorption of extracellular matrix (ECM) proteins including collagen, laminin and fibronectin provide more degrees of support for cell adhesion. The purpose of cell imprinting is to imitate the natural topography of cell membranes by gels or polymers to create a reliable environment for the regulation of cell function. The results of recent studies show that cell imprinting is a tool to guide the behavior of cultured cells by controlling their adhesive interactions with surfaces. Therefore, in this review we aim to compare different cell cultures with the imprinting method and discuss different cell imprinting applications in regenerative medicine, personalized medicine, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Farkhonde Hasannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Fazilat
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
5
|
Gerdan Z, Saylan Y, Denizli A. Recent Advances of Optical Sensors for Copper Ion Detection. MICROMACHINES 2022; 13:1298. [PMID: 36014218 PMCID: PMC9413819 DOI: 10.3390/mi13081298] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
A trace element copper (Cu2+) ion is the third most plentiful metal ion that necessary for all living organisms and playing a critical role in several processes. Nonetheless, according to cellular needs, deficient or excess Cu2+ ion cause various diseases. For all these reasons, optical sensors have been focused rapid Cu2+ ion detection in real-time with high selectivity and sensitivity. Optical sensors can measure fluorescence in the refractive index-adsorption from the relationships between light and matter. They have gained great attention in recent years due to the excellent advantages of simple and naked eye recognition, real-time detection, low cost, high specificity against analytes, a quick response, and the need for less complex equipment in analysis. This review aims to show the significance of Cu2+ ion detection and electively current trends in optical sensors. The integration of optical sensors with different systems, such as microfluidic systems, is mentioned, and their latest studies in medical and environmental applications also are depicted. Conclusions and future perspectives on these advances is added at the end of the review.
Collapse
Affiliation(s)
| | | | - Adil Denizli
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| |
Collapse
|
6
|
Factors Affecting the Analytical Performance of Magnetic Molecularly Imprinted Polymers. Polymers (Basel) 2022; 14:polym14153008. [PMID: 35893970 PMCID: PMC9329897 DOI: 10.3390/polym14153008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 12/07/2022] Open
Abstract
During the last few years, separation techniques using molecular imprinting polymers (MIPs) have been developed, making certain improvements using magnetic properties. Compared to MIP, Magnetic molecularly imprinted polymers (MMIPs) have high selectivity in sample pre-treatment and allow for fast and easy isolation of the target analyte. Its magnetic properties and good extraction performance depend on the MMIP synthesis step, which consists of 4 steps, namely magnetite manufacture, magnetic coating using modified components, polymerization and template desorption. This review discusses the factors that will affect the performance of MMIP as a selective sorbent at each stage. MMIP, using Fe3O4 as a magnetite core, showed strong superparamagnetism; it was prepared using the co-precipitation method using FeCl3·6H2O and FeCl2·H2O to obtain high magnetic properties, using NH4OH solution added for higher crystallinity. In magnetite synthesis, the use of a higher temperature and reaction time will result in a larger nanoparticle size and high magnetization saturation, while a higher pH value will result in a smaller particle size. In the modification step, the use of high amounts of oleic acid results in smaller nanoparticles; furthermore, determining the correct molar ratio between FeCl3 and the shielding agent will also result in smaller particles. The next factor is that the proper ratio of functional monomer, cross-linker and solvent will improve printing efficiency. Thus, it will produce MMIP with high selectivity in sample pre-treatment.
Collapse
|
7
|
Donato L, Nasser II, Majdoub M, Drioli E. Green Chemistry and Molecularly Imprinted Membranes. MEMBRANES 2022; 12:472. [PMID: 35629798 PMCID: PMC9144692 DOI: 10.3390/membranes12050472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/16/2022]
Abstract
Technological progress has made chemistry assume a role of primary importance in our daily life. However, the worsening of the level of environmental pollution is increasingly leading to the realization of more eco-friendly chemical processes due to the advent of green chemistry. The challenge of green chemistry is to produce more and better while consuming and rejecting less. It represents a profitable approach to address environmental problems and the new demands of industrial competitiveness. The concept of green chemistry finds application in several material syntheses such as organic, inorganic, and coordination materials and nanomaterials. One of the different goals pursued in the field of materials science is the application of GC for producing sustainable green polymers and membranes. In this context, extremely relevant is the application of green chemistry in the production of imprinted materials by means of its combination with molecular imprinting technology. Referring to this issue, in the present review, the application of the concept of green chemistry in the production of polymeric materials is discussed. In addition, the principles of green molecular imprinting as well as their application in developing greenificated, imprinted polymers and membranes are presented. In particular, green actions (e.g., the use of harmless chemicals, natural polymers, ultrasound-assisted synthesis and extraction, supercritical CO2, etc.) characterizing the imprinting and the post-imprinting process for producing green molecularly imprinted membranes are highlighted.
Collapse
Affiliation(s)
- Laura Donato
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
| | - Imen Iben Nasser
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Mustapha Majdoub
- Faculté des Sciences de Monastir, Université de Monastir, Bd. de l’Environnement, Monastir 5019, Tunisia; (I.I.N.); (M.M.)
| | - Enrico Drioli
- Institute on Membrane Technology, CNR-ITM, University of Calabria, Via P. Bucci, 17/C, 87030 Rende, CS, Italy;
- Department of Engineering and of the Environment, University of Calabria, 87030 Rende, CS, Italy
- College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Centre of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Modern and Dedicated Methods for Producing Molecularly Imprinted Polymer Layers in Sensing Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Molecular imprinting (MI) is the most available and known method to produce artificial recognition sites, similar to antibodies, inside or at the surface of a polymeric material. For this reason, scholars all over the world have found MI appealing, thus developing, in this past period, various types of molecularly imprinted polymers (MIPs) that can be applied to a wide range of applications, including catalysis, separation sciences and monitoring/diagnostic devices for chemicals, biochemicals and pharmaceuticals. For instance, the advantages brought by the use of MIPs in the sensing and analytics field refer to higher selectivity, sensitivity and low detection limits, but also to higher chemical and thermal stability as well as reusability. In light of recent literature findings, this review presents both modern and dedicated methods applied to produce MIP layers that can be integrated with existent detection systems. In this respect, the following MI methods to produce sensing layers are presented and discussed: surface polymerization, electropolymerization, sol–gel derived techniques, phase inversionand deposition of electroactive pastes/inks that include MIP particles.
Collapse
|
9
|
Pu J, Wang H, Huang C, Bo C, Gong B, Ou J. Progress of molecular imprinting technique for enantioseparation of chiral drugs in recent ten years. J Chromatogr A 2022; 1668:462914. [DOI: 10.1016/j.chroma.2022.462914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 12/22/2022]
|
10
|
Kadhem AJ, Gentile GJ, Fidalgo de Cortalezzi MM. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021; 26:6233. [PMID: 34684813 PMCID: PMC8540986 DOI: 10.3390/molecules26206233] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 01/30/2023] Open
Abstract
Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.
Collapse
Affiliation(s)
- Abbas J. Kadhem
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| | - Guillermina J. Gentile
- Department of Chemical Engineering, Instituto Tecnológico de Buenos Aires, Lavardén 315, Buenos Aires C1437FBG, Argentina;
| | - Maria M. Fidalgo de Cortalezzi
- Department of Civil and Environmental Engineering, University of Missouri, E2509 Lafferre Hall, Columbia, MO 65211, USA;
| |
Collapse
|
11
|
Romanholo PVV, Razzino CA, Raymundo-Pereira PA, Prado TM, Machado SAS, Sgobbi LF. Biomimetic electrochemical sensors: New horizons and challenges in biosensing applications. Biosens Bioelectron 2021; 185:113242. [PMID: 33915434 DOI: 10.1016/j.bios.2021.113242] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
The urge to meet the ever-growing needs of sensing technology has spurred research to look for new alternatives to traditional analytical methods. In this scenario, the glucometer is the flagship of commercial electrochemical sensing platforms, combining selectivity, reliability and portability. However, other types of enzyme-based biosensors seldom achieve the market, in spite of the large and increasing number of publications. The reasons behind their commercial limitations concern enzyme denaturation, and the high costs associated with procedures for their extraction and purification. In this sense, biomimetic materials that seek to imitate the desired properties of natural enzymes and biological systems have come out as an appealing path for robust and sensitive electrochemical biosensors. We herein portray the historical background of these biomimicking materials, covering from their beginnings until the most impactful applications in the field of electrochemical sensing platforms. Throughout the discussion, we present and critically appraise the major benefits and the most significant drawbacks offered by the bioinspired systems categorized as Nanozymes, Synzymes, Molecularly Imprinted Polymers (MIPs), Nanochannels, and Metal Complexes. Innovative strategies of fabrication and challenging applications are further reviewed and evaluated. In the end, we ponder over the prospects of this emerging field, assessing the most critical issues that shall be faced in the coming decade.
Collapse
Affiliation(s)
- Pedro V V Romanholo
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil
| | - Claudia A Razzino
- Instituto de Pesquisa e Desenvolvimento, Universidade Do Vale Do Paraíba, São José Dos Campos, SP, 12244-000, Brazil
| | | | - Thiago M Prado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Sergio A S Machado
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Livia F Sgobbi
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, 74690-900, Brazil.
| |
Collapse
|
12
|
Fauzi NIM, Fen YW, Omar NAS, Hashim HS. Recent Advances on Detection of Insecticides Using Optical Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:3856. [PMID: 34204853 PMCID: PMC8199770 DOI: 10.3390/s21113856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
| | - Yap Wing Fen
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (N.A.S.O.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
13
|
Gonçalves MDL, Truta LAN, Sales MGF, Moreira FTC. Electrochemical Point-of Care (PoC) Determination of Interleukin-6 (IL-6) Using a Pyrrole (Py) Molecularly Imprinted Polymer (MIP) on a Carbon-Screen Printed Electrode (C-SPE). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1879108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- M. de Lurdes Gonçalves
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Liliana A. N. Truta
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - M. Goreti F. Sales
- BioMark/UC, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| | - Felismina T. C. Moreira
- BioMark/ISEP, School of Engineering, Polytechnic of Porto, Porto, Portugal
- CEB, Centre of Biological Engineering, Minho University, Braga, Portugal
| |
Collapse
|
14
|
|
15
|
Blonskaya I, Lizunov N, Olejniczak K, Orelovich O, Yamauchi Y, Toimil-Molares M, Trautmann C, Apel P. Elucidating the roles of diffusion and osmotic flow in controlling the geometry of nanochannels in asymmetric track-etched membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
A general strategy to control antibody specificity against targets showing molecular and biological similarity: Salmonella case study. Sci Rep 2020; 10:18439. [PMID: 33116156 PMCID: PMC7595100 DOI: 10.1038/s41598-020-75285-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 10/12/2020] [Indexed: 11/10/2022] Open
Abstract
The control of antibody specificity plays pivotal roles in key technological fields such as diagnostics and therapeutics. During the development of immunoassays (IAs) for the biosensing of pathogens in food matrices, we have found a way to rationalize and control the specificity of polyclonal antibodies (sera) for a complex analytical target (the Salmonella genus), in terms of number of analytes (Salmonella species) and potential cross-reactivity with similar analytes (other bacteria strains). Indeed, the biosensing of Salmonella required the development of sera and serum mixtures displaying homogeneous specificity for a large set of strains showing broad biochemical variety (54 Salmonella serovars tested in this study), which partially overlaps with the molecular features of other class of bacteria (like specific serogroups of E. coli). To achieve a trade-off between specificity harmonisation and maximization, we have developed a strategy based on the conversion of the specificity profiles of individual sera in to numerical descriptors, which allow predicting the capacity of serum mixtures to detect multiple bacteria strains. This approach does not imply laborious purification steps and results advantageous for process scaling-up, and may help in the customization of the specificity profiles of antibodies needed for diagnostic and therapeutic applications such as multi-analyte detection and recombinant antibody engineering, respectively.
Collapse
|
17
|
Zouaoui F, Bourouina-Bacha S, Bourouina M, Jaffrezic-Renault N, Zine N, Errachid A. Electrochemical sensors based on molecularly imprinted chitosan: A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115982] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
18
|
Du H, Li Z, Wang Y, Yang Q, Wu W. Nanomaterial-based Optical Biosensors for the Detection of Foodborne Bacteria. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1740733] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Han Du
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Zhaojie Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Yi Wang
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
19
|
Regasa MB, Refera Soreta T, Femi OE, C. Ramamurthy P. Development of Molecularly Imprinted Conducting Polymer Composite Film-Based Electrochemical Sensor for Melamine Detection in Infant Formula. ACS OMEGA 2020; 5:4090-4099. [PMID: 32149237 PMCID: PMC7057703 DOI: 10.1021/acsomega.9b03747] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/03/2020] [Indexed: 05/02/2023]
Abstract
Simple, fast, and sensitive molecularly imprinted composite thin-film-based electrochemical sensor developed by using in situ co-electropolymerization of aniline and acrylic acid in the presence of melamine as a template is described here. The prepolymerization complex formation was studied by using Fourier transform infrared (FTIR) spectrophotometry, while the film formation was performed and characterized by cyclic voltammetry, Fourier transform infrared (FTIR), and scanning electron microscopy (SEM). The optimization of important parameters and removal of melamine generated the binding sites in the polymer matrix, which can recognize melamine specifically. Electrochemical measurements were performed to achieve the linear range, the limit of quantification, and limit of detection of 0.1-180, 0.0573, and 0.0172 nM, respectively. The sensitivity of the sensor was attributed to the synergistic effects of amine from aniline and the carboxylic group from acrylic acid to form multiple noncovalent interactions with the template. Melamine-spiked infant formula and raw milk were analyzed by the developed sensor, and the recovery range of 95.87-105.63% with a relative standard deviation of 1.11-2.23% was obtained. The results showed that the developed sensor using the new composite polymer receptor is promising for the online monitoring of melamine in the food industries in the future.
Collapse
Affiliation(s)
- Melkamu Biyana Regasa
- School
of Materials Science and Engineering, Jimma
Institute of Technology, Jimma University, Jimma 378, Ethiopia
| | - Tesfaye Refera Soreta
- Materials
Engineering Department, Addis Ababa Institute
of Technology, Addis Ababa University, Addis Ababa 1000, Ethiopia
| | - Olu Emmanuel Femi
- School
of Materials Science and Engineering, Jimma
Institute of Technology, Jimma University, Jimma 378, Ethiopia
| | - Praveen C. Ramamurthy
- Materials
Engineering Department, Indian Institute
of Science, Bangalore 560012, India
| |
Collapse
|
20
|
Cairo P, De Luca G, Tocci E, Drioli E. 110th Anniversary: Selective Recognition of 5-Fluorouracil with Molecular Imprinting Membranes: Molecular Details. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Patrizia Cairo
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Giorgio De Luca
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Elena Tocci
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
| | - Enrico Drioli
- Institute on Membrane Technology, ITM-CNR, Via P. Bucci 17/C, 87030 Rende (CS), Italy
- Department of Chemical Engineering and Materials, University of Calabria, Via P. Bucci 44, 87030 Rende (CS), Italy
- King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- WCU Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 133-791, Korea
| |
Collapse
|
21
|
Aloisi A, Della Torre A, De Benedetto A, Rinaldi R. Bio-Recognition in Spectroscopy-Based Biosensors for *Heavy Metals-Water and Waterborne Contamination Analysis. BIOSENSORS 2019; 9:E96. [PMID: 31366137 PMCID: PMC6784378 DOI: 10.3390/bios9030096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 02/07/2023]
Abstract
: Microsystems and biomolecules integration as well multiplexing determinations are key aspects of sensing devices in the field of heavy metal contamination monitoring. The present review collects the most relevant information about optical biosensors development in the last decade. Focus is put on analytical characteristics and applications that are dependent on: (i) Signal transduction method (luminescence, colorimetry, evanescent wave (EW), surface-enhanced Raman spectroscopy (SERS), Förster resonance energy transfer (FRET), surface plasmon resonance (SPR)); (ii) biorecognition molecules employed (proteins, nucleic acids, aptamers, and enzymes). The biosensing systems applied (or applicable) to water and milk samples will be considered for a comparative analysis, with an emphasis on water as the primary source of possible contamination along the food chain.
Collapse
Affiliation(s)
- Alessandra Aloisi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Della Torre
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy
| | - Angelantonio De Benedetto
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Rosaria Rinaldi
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
- Mathematics and Physics "E. De Giorgi" Department, University of Salento, Via Monteroni, 73100 Lecce, Italy.
- ISUFI, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
22
|
Mass-Sensitive Sensing of Melamine in Dairy Products with Molecularly Imprinted Polymers: Matrix Challenges. SENSORS 2019; 19:s19102366. [PMID: 31126005 PMCID: PMC6566888 DOI: 10.3390/s19102366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Abstract
Food standards and quality control are important means to ensure public health. In the last decade, melamine has become a rather notorious example of food adulteration: Spiking products with low-cost melamine in order to feign high amino acid content exploits the lack in specificity of the established Kjeldahl method for determining organic nitrogen. This work discusses the responses of a sensor based on quartz crystal microbalances (QCM) coated with molecularly imprinted polymers (MIP) to detect melamine in real life matrices both in a selective and a sensitive manner. Experiments in pure milk revealed no significant sensor responses. However, sensor response increased to a frequency change of −30Hz after diluting the matrix ten times. Systematic evaluation of this effect by experiments in melamine solutions containing bovine serum albumin (BSA) and casein revealed that proteins noticeably influence sensor results. The signal of melamine in water (1600 mg/L) decreases to half of its initial value, if either 1% BSA or casein are present. Higher protein concentrations decrease sensor responses even further. This suggests significant interaction between the analyte and proteins in general. Follow-up experiments revealed that centrifugation of tagged serum samples results in a significant loss of sensor response, thereby further confirming the suspected interaction between protein and melamine.
Collapse
|
23
|
Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1279. [PMID: 30871280 PMCID: PMC6472044 DOI: 10.3390/s19061279] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/04/2019] [Accepted: 03/10/2019] [Indexed: 02/08/2023]
Abstract
Sensors have been extensively used owing to multiple advantages, including exceptional sensing performance, user-friendly operation, fast response, high sensitivity and specificity, portability, and real-time analysis. In recent years, efforts in sensor realm have expanded promptly, and it has already presented a broad range of applications in the fields of medical, pharmaceutical and environmental applications, food safety, and homeland security. In particular, molecularly imprinted polymer based sensors have created a fascinating horizon for surface modification techniques by forming specific recognition cavities for template molecules in the polymeric matrix. This method ensures a broad range of versatility to imprint a variety of biomolecules with different size, three dimensional structure, physical and chemical features. In contrast to complex and time-consuming laboratory surface modification methods, molecular imprinting offers a rapid, sensitive, inexpensive, easy-to-use, and highly selective approaches for sensing, and especially for the applications of diagnosis, screening, and theranostics. Due to its physical and chemical robustness, high stability, low-cost, and reusability features, molecularly imprinted polymer based sensors have become very attractive modalities for such applications with a sensitivity of minute structural changes in the structure of biomolecules. This review aims at discussing the principle of molecular imprinting method, the integration of molecularly imprinted polymers with sensing tools, the recent advances and strategies in molecular imprinting methodologies, their applications in medical, and future outlook on this concept.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Semra Akgönüllü
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara 06230, Turkey.
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey.
| |
Collapse
|
24
|
Joye IJ, Corradini MG, Duizer LM, Bohrer BM, LaPointe G, Farber JM, Spagnuolo PA, Rogers MA. A comprehensive perspective of food nanomaterials. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 88:1-45. [PMID: 31151722 DOI: 10.1016/bs.afnr.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanotechnology is a rapidly developing toolbox that provides solutions to numerous challenges in the food industry and meet public demands for healthier and safer food products. The diversity of nanostructures and their vast, tunable functionality drives their inclusion in food products and packaging materials to improve their nutritional quality through bioactive fortification and probiotics encapsulation, enhance their safety due to their antimicrobial and sensing capabilities and confer novel sensorial properties. In this food nanotechnology state-of-the-art communication, matrix materials with particular focus on food-grade components, existing and novel production techniques, and current and potential applications in the fields of food quality, safety and preservation, nutrient bioaccessibility and digestibility will be detailed. Additionally, a thorough analysis of potential strategies to assess the safety of these novel nanostructures is presented.
Collapse
Affiliation(s)
- I J Joye
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M G Corradini
- Arrell Food Institute, University of Guelph, Guelph, ON, Canada
| | - L M Duizer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - B M Bohrer
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - G LaPointe
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - J M Farber
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - P A Spagnuolo
- Department of Food Science, University of Guelph, Guelph, ON, Canada
| | - M A Rogers
- Department of Food Science, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
25
|
Choi JR, Yong KW, Choi JY, Cowie AC. Progress in Molecularly Imprinted Polymers for Biomedical Applications. Comb Chem High Throughput Screen 2019; 22:78-88. [PMID: 30914017 DOI: 10.2174/1386207322666190325115526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favorable specificity and selectivity for target analytes, and long shelf life. These materials are able to mimic natural recognition entities, including biological receptors and antibodies, providing a versatile platform to achieve the desirable functionality for various biomedical applications. OBJECTIVE In this review article, we introduce the most recent development of MIPs to date. We first highlight the advantages of using MIPs for a broad range of biomedical applications. We then review their various methods of synthesis along with their latest progress in biomedical applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the existing challenges and future perspectives of MIPs for biomedical applications are briefly discussed. CONCLUSION We envision that MIPs may be used as potential materials for diverse biomedical applications in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada
- Centre for Blood Research, Life Sciences Centre, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Kar Wey Yong
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| | - Alistair C Cowie
- Faculty of Medicine, University of Dundee, Dow Street, Dundee DD1 5EH, United Kingdom
| |
Collapse
|
26
|
Apel PY, Blonskaya IV, Lizunov NE, Olejniczak K, Orelovitch OL, Toimil-Molares ME, Trautmann C. Osmotic Effects in Track-Etched Nanopores. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1703327. [PMID: 29573553 DOI: 10.1002/smll.201703327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Asymmetrically etched ion-track membranes attract great interest for both fundamental and technical reasons because of a large variety of applications. So far, conductometric measurements during track etching provide only limited information about the complicated asymmetric etching process. In this paper, monitoring of osmotic phenomena is used to elucidate the initial phase of nanopore formation. It is shown that strong alkaline solutions generate a considerable osmotic flow of water through newborn conical pores. The interplay between diffusion and convection in the pore channel results in a substantially nonlinear alkali concentration gradient and a rapid change in the pore geometry after breakthrough. Similar phenomena are observed in experiments with cylindrical track-etched pores of 15-30 nm in radius. A theoretical description of the diffusion-convection processes in the pores is provided.
Collapse
Affiliation(s)
- Pavel Y Apel
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980, Dubna, Russia
- Department of Chemistry, New Technologies and Materials, Dubna State University, Universitetskaya str. 19, 141980, Dubna, Russia
| | - Irina V Blonskaya
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980, Dubna, Russia
| | - Nikolay E Lizunov
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980, Dubna, Russia
| | - Katarzyna Olejniczak
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980, Dubna, Russia
- Department of Chemistry, Nicolaus Copernicus University, Gagarina str. 7, 87-100, Torun, Poland
| | - Oleg L Orelovitch
- Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research, Joliot-Curie str. 6, 141980, Dubna, Russia
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291, Darmstadt, Germany
- Materialwissenschaft, Technische Universität Darmstadt, Alarich-Weiss-Straße 2, 64287, Darmstadt, Germany
| |
Collapse
|
27
|
Molecularly imprinted electrochemical sensor, formed on Ag screen-printed electrodes, for the enantioselective recognition of d and l phenylalanine. Biosens Bioelectron 2018; 105:143-150. [DOI: 10.1016/j.bios.2018.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/01/2018] [Accepted: 01/05/2018] [Indexed: 02/01/2023]
|
28
|
Conductometric Sensor for PAH Detection with Molecularly Imprinted Polymer as Recognition Layer. SENSORS 2018; 18:s18030767. [PMID: 29510479 PMCID: PMC5876665 DOI: 10.3390/s18030767] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/12/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
A conductometric sensor based on screen-printed interdigital gold electrodes on glass substrate coated with molecularly imprinted polyurethane layers was fabricated to detect polycyclic aromatic hydrocarbons (PAHs) in water. The results prove that screen-printed interdigital electrodes are very suitable transducers to fabricate low-cost sensor systems for measuring change in resistance of PAH-imprinted layers while exposing to different PAHs. The sensor showed good selectivity to its templated molecules and high sensitivity with a detection limit of 1.3 nmol/L e.g., for anthracene in water which is lower than WHO’s permissible limit.
Collapse
|
29
|
Algieri C, Parisi O, Gullo M, Puoci F, Drioli E, Donato L. Development of novel hybrid imprinted membranes for selective recovery of theophylline. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Phan NVH, Sussitz HF, Ladenhauf E, Pum D, Lieberzeit PA. Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition. SENSORS (BASEL, SWITZERLAND) 2018; 18:E180. [PMID: 29320454 PMCID: PMC5796476 DOI: 10.3390/s18010180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/17/2022]
Abstract
Herein we report novel approaches to the molecular imprinting of proteins utilizing templates sizing around 10 nm and some 100 nm. The first step comprised synthesizing nanoparticles of molecularly imprinted polymers (MIP) towards bovine serum albumin (BSA) and characterizing them according to size and binding capacity. In a second step, they were utilized as templates. Quartz crystal microbalances (QCM) coated with MIP thin films based on BSA MIP nanoparticles lead to a two-fold increase in sensor responses, compared with the case of directly using the protein as the template. This also established that individual BSA molecules exhibit different "epitopes" for molecular imprinting on their outer surfaces. In light of this knowledge, a possible MIP-based biomimetic assay format was tested by exposing QCM coated with BSA MIP thin films to mixtures of BSA and imprinted and non-imprinted polymer (NIP) nanoparticles. At high protein concentrations (1000 ppm) measurements revealed aggregation behavior, i.e., BSA binding MIP NP onto the MIP surface. This increased sensor responses by more than 30% during proof of concept measurements. At lower a BSA concentration (500 ppm), thin films and particles revealed competitive behavior.
Collapse
Affiliation(s)
- Nam Van Ho Phan
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Hermann F Sussitz
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Eva Ladenhauf
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| |
Collapse
|
31
|
Molecularly imprinted polymers for the determination of organophosphorus pesticides in complex samples. Talanta 2018; 176:465-478. [DOI: 10.1016/j.talanta.2017.08.067] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/16/2017] [Accepted: 08/20/2017] [Indexed: 11/20/2022]
|
32
|
Wei MH, Wang S, Jiang WY, Chen HY, Wang Y, Meng T. Preparation and Characterization of Dual-Template Molecularly Imprinted Membrane with High Flux Based on Blending the Inorganic Nanoparticles. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0716-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Sacramento AS, Moreira FT, Guerreiro JL, Tavares AP, Sales MGF. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.098] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Stepanova MА, Kinziabulatova LR, Nikitina AA, Korzhikova-Vlakh EG, Tennikova TB. Cholesterol-imprinted macroporous monoliths: Preparation and characterization. Electrophoresis 2017; 38:2965-2974. [PMID: 28881397 DOI: 10.1002/elps.201700335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/02/2017] [Accepted: 09/03/2017] [Indexed: 11/08/2022]
Abstract
The development of sorbents for selective binding of cholesterol, which is a risk factor for cardiovascular disease, has a great importance for analytical science and medicine. In this work, two series of macroporous cholesterol-imprinted monolithic sorbents differing in the composition of functional monomers (methacrylic acid, butyl methacrylate, 2-hydroxyethyl methacrylate and ethylene dimethacrylate), amount of a template (4, 6 and 8 mol%) used for molecular imprinting, as well as mean pore size were synthesized by in situ free-radical process in stainless steel housing of 50 mm × 4.6 mm i.d. All prepared materials were characterized regarding to their hydrodynamic permeability and porous properties, as well as examined by BET and SEM methods. Imprinting factors, apparent dynamic dissociation constants, the maximum binding capacity, the number of theoretical plates and the height equivalent to a theoretical palate of MIP monoliths at different mobile phase flow rates were determined. The separation of a mixture of structural analogues, namely, cholesterol and prednisolone, was demonstrated. Additionally, the possibility of using the developed monoliths for cholesterol solid-phase extraction from simulated biological solution was shown.
Collapse
Affiliation(s)
- Mariia А Stepanova
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia.,Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| | | | - Anna A Nikitina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
| | | | - Tatiana B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
35
|
Synthesis and application of molecularly imprinted polymers for the selective extraction of organophosphorus pesticides from vegetable oils. J Chromatogr A 2017; 1513:59-68. [DOI: 10.1016/j.chroma.2017.07.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022]
|
36
|
Fourou H, Braiek M, Bonhomme A, Lagarde F, Zazoua A, Jaffrezic-Renault N. Voltammetric Sensor Based on a Double-Layered Molecularly Imprinted Polymer for Testosterone. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1298118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Hana Fourou
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
- Université de Jijel, Jijel, Algeria
- Laboratory LMEPA, Université de Bordj Bou Arreridj, Bordj Bou Arreridj, Algeria
| | - Mohamed Braiek
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
| | - Anne Bonhomme
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
| | - Florence Lagarde
- Institute of Analytical Sciences, University of Lyon, Villeurbanne, France
| | | | | |
Collapse
|
37
|
Saylan Y, Yilmaz F, Özgür E, Derazshamshir A, Yavuz H, Denizli A. Molecular Imprinting of Macromolecules for Sensor Applications. SENSORS 2017; 17:s17040898. [PMID: 28422082 PMCID: PMC5426548 DOI: 10.3390/s17040898] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023]
Abstract
Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.
Collapse
Affiliation(s)
- Yeşeren Saylan
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Fatma Yilmaz
- Department of Chemistry Technology, Abant Izzet Baysal University, 14900 Bolu, Turkey.
| | - Erdoğan Özgür
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Ali Derazshamshir
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Handan Yavuz
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| | - Adil Denizli
- Department of Chemistry, Division of Biochemistry, Hacettepe University, 06800 Ankara, Turkey.
| |
Collapse
|
38
|
Apel PY, Blonskaya IV, Lizunov NE, Olejniczak K, Orelovitch OL, Sartowska BA, Dmitriev SN. Asymmetrical nanopores in track membranes: Fabrication, the effect of nanopore shape and electric charge of pore walls, promising applications. RUSS J ELECTROCHEM+ 2017. [DOI: 10.1134/s1023193517010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Wei MH, Chen HY, Wang S, Jiang WY, Wang Y, Wu ZF. Synthesis and Characterization of Hybrid Molecularly Imprinted Membrane with Blending SiO2 Nanoparticles for Ferulic Acid. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0502-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Puiu M, Jaffrezic-Renault N, Bala C. Biomimetic Sensors Based on Molecularly Imprinted Interfaces. PAST, PRESENT AND FUTURE CHALLENGES OF BIOSENSORS AND BIOANALYTICAL TOOLS IN ANALYTICAL CHEMISTRY: A TRIBUTE TO PROFESSOR MARCO MASCINI 2017. [DOI: 10.1016/bs.coac.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
41
|
Boysen RI, Schwarz LJ, Nicolau DV, Hearn MTW. Molecularly imprinted polymer membranes and thin films for the separation and sensing of biomacromolecules. J Sep Sci 2016; 40:314-335. [PMID: 27619154 DOI: 10.1002/jssc.201600849] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 07/31/2016] [Accepted: 08/29/2016] [Indexed: 01/25/2023]
Abstract
This review describes recent advances associated with the development of surface imprinting methods for the synthesis of polymeric membranes and thin films, which possess the capability to selectively and specifically recognize biomacromolecules, such as proteins and single- and double-stranded DNA, employing "epitope" or "whole molecule" approaches. Synthetic procedures to create different molecularly imprinted polymer membranes or thin films are discussed, including grafting/in situ polymerization, drop-, dip-, or spin-coating procedures, electropolymerization as well as micro-contact or stamp lithography imprinting methods. Highly sensitive techniques for surface characterization and analyte detection are described, encompassing luminescence and fluorescence spectroscopy, X-ray photoelectron spectroscopy, FTIR spectroscopy, surface-enhanced Raman spectroscopy, atomic force microscopy, quartz crystal microbalance analysis, cyclic voltammetry, and surface plasmon resonance. These developments are providing new avenues to produce bioelectronic sensors and new ways to explore through advanced separation science procedures complex phenomena associated with the origins of biorecognition in nature.
Collapse
Affiliation(s)
- Reinhard I Boysen
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia
| | - Lachlan J Schwarz
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia.,School of Agricultural and Wine Sciences, Faculty of Science, Charles Sturt University, Wagga Wagga, Australia
| | - Dan V Nicolau
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia.,Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Canada
| | - Milton T W Hearn
- Australian Centre for Research on Separation Science (ACROSS), Centre for Green Chemistry, Monash University, Melbourne, Australia
| |
Collapse
|
42
|
Shah N, Rehan T, Park JK. Adsorptive molecularly imprinted composite membranes for chiral separation of phenylalanine. POLISH JOURNAL OF CHEMICAL TECHNOLOGY 2016. [DOI: 10.1515/pjct-2016-0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two types of composite imprinted membranes, i.e., composite membrane comprised of D-Phe imprinted beads and D-Phe imprinted membrane or DCM and composite membrane comprised of L-Phe imprinted beads and L-Phe imprinted membranes or LCM, were synthesized by phase inversion technique after a uniform dispersion of beads within the polymeric solutions using simple physico-mechanical process. The assemblies of the prepared DCM, LCM and control membranes were employed in ultrafiltration for chiral separation of D, L-Phenylalanine racemate solution. DCM and LCM showed an improved adsorption capacity (0.334 mg g-1 and 0.365 mg g-1 respectively), and adsorption selectivity (2.72 and 2.98 respectively). However, the percent rejection of the template and counter enantiomer were lower than that of control membranes. Compared to control membrane, the DCM and LCM showed inverse permselectivity. These composite membranes having better adsorption and separation ability for Phenylalanine racemate solution will be suitable in the future for various other applications.
Collapse
Affiliation(s)
- Nasrullah Shah
- Kyungpook National University, Department of Chemical Engineering, Taegu, Korea Pakistan
- Abdul Wali Khan University Mardan, Department of Chemistry, Mardan, Pakistan
| | - Touseef Rehan
- Quaid-i-Azam University, Department of Biochemistry, Islamabad, Pakistan
| | - Joong Kon Park
- Kyungpook National University, Department of Chemical Engineering, Taegu, Korea (Democratic People’s Republic of)
| |
Collapse
|
43
|
Kubo T, Otsuka K. Recent progress for the selective pharmaceutical analyses using molecularly imprinted adsorbents and their related techniques: A review. J Pharm Biomed Anal 2016; 130:68-80. [DOI: 10.1016/j.jpba.2016.05.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/23/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
|
44
|
Yoshikawa M, Tharpa K, Dima ŞO. Molecularly Imprinted Membranes: Past, Present, and Future. Chem Rev 2016; 116:11500-11528. [PMID: 27610706 DOI: 10.1021/acs.chemrev.6b00098] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
More than 80 years ago, artificial materials with molecular recognition sites emerged. The application of molecular imprinting to membrane separation has been studied since 1962. Especially after 1990, such research has been intensively conducted by membranologists and molecular imprinters to understand the advantages of each technique with the aim of constructing an ideal membrane, which is still an active area of research. The present review aims to be a substantial, comprehensive, authoritative, critical, and general-interest review, placed at the cross section of two broad, interconnected, practical, and extremely dynamic fields, namely, the fields of membrane separation and molecularly imprinted polymers. This review describes the recent discoveries that appeared after repeated and fertile collisions between these two fields in the past three years, to which are added the worthy acknowledgments of pioneering discoveries and a look into the future of molecularly imprinted membranes. The review begins with a general introduction in membrane separation, followed by a short theoretical section regarding the basic principles of mass transport through a membrane. Following these general aspects on membrane separation, two principles of obtaining polymeric materials with molecular recognition properties are reviewed, namely, molecular imprinting and alternative molecular imprinting, followed the methods of obtaining and practical applications for the particular case of molecularly imprinted membranes. The review continues with insights into molecularly imprinted nanofiber membranes as a promising, highly optimized type of membrane that could provide a relatively high throughput without a simultaneous unwanted reduction in permselectivity. Finally, potential applications of molecularly imprinted membranes in a variety of fields are highlighted, and a look into the future of membrane separations is offered.
Collapse
Affiliation(s)
- Masakazu Yoshikawa
- Department of Biomolecular Engineering, Kyoto Institute of Technology , Matsugasaki, Kyoto 606-8585, Japan
| | - Kalsang Tharpa
- Department of Chemistry, University of Mysore, Manasagangotri , Mysore 570 006, India
| | - Ştefan-Ovidiu Dima
- Faculty of Applied Chemistry and Materials Science, Department of Chemical and Biochemical Engineering, University Politehnica of Bucharest , 1-7 Gheorghe Polizu, 011061 Bucharest, Romania.,Bioresources Department, INCDCP-ICECHIM Bucharest , 202 Splaiul Independentei, CP 35-174, 060021 Bucharest, Romania
| |
Collapse
|
45
|
Molecularly imprinted macroporous monoliths for solid-phase extraction: Effect of pore size and column length on recognition properties. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1029-1030:198-204. [DOI: 10.1016/j.jchromb.2016.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/20/2016] [Accepted: 07/03/2016] [Indexed: 01/30/2023]
|
46
|
Burri HVR, Yu D. Covalent Imprinting and Covalent Rebinding of Benzyl Mercaptan: Towards a Facile Detection of Proteins. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1196694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Donghong Yu
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
47
|
Rotariu L, Lagarde F, Jaffrezic-Renault N, Bala C. Electrochemical biosensors for fast detection of food contaminants – trends and perspective. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2015.12.017] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Iben Nasser I, Algieri C, Garofalo A, Drioli E, Ahmed C, Donato L. Hybrid imprinted membranes for selective recognition of quercetin. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
49
|
Chen F, Zhao W, Zhang J, Kong J. Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins. Phys Chem Chem Phys 2016; 18:718-25. [DOI: 10.1039/c5cp04218f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel design of magnetic two-dimensional molecularly imprinted polymers on Fe3O4@GO for the high recognition and separation of proteins.
Collapse
Affiliation(s)
- Fangfang Chen
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Weifeng Zhao
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Jingjing Zhang
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| | - Jie Kong
- MOE Key Laboratory of Space Applied Physics and Chemistry
- Shaanxi Key Laboratory of Macromolecular Science and Technology
- School of Science, Northwestern Polytechnical University
- Xi'an
- P. R. China
| |
Collapse
|
50
|
McKeating KS, Aubé A, Masson JF. Biosensors and nanobiosensors for therapeutic drug and response monitoring. Analyst 2016; 141:429-49. [DOI: 10.1039/c5an01861g] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Review of different biosensors and nanobiosensors increasingly used in therapeutic drug monitoring (TDM) for pharmaceutical drugs with dosage limitations or toxicity issues and for therapeutic response monitoring.
Collapse
Affiliation(s)
| | - Alexandra Aubé
- Département de chimie
- Université de Montréal
- Montreal
- Canada
| | - Jean-Francois Masson
- Département de chimie
- Université de Montréal
- Montreal
- Canada
- Centre for self-assembled chemical structures (CSACS)
| |
Collapse
|