1
|
Deshmukh R, Dewangan B, Harwansh RK, Agrawal R, Garg A, Chopra H. Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review. Curr Drug Deliv 2025; 22:310-331. [PMID: 38265385 DOI: 10.2174/0115672018291253240115012327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of P. falciparum are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | | | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Akash Garg
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Himansu Chopra
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| |
Collapse
|
2
|
Iftikhar FJ, Shah A, Wali Q, Kokab T. Advancements in Nanofiber-Based Electrochemical Biosensors for Diagnostic Applications. BIOSENSORS 2023; 13:bios13040416. [PMID: 37185491 PMCID: PMC10136113 DOI: 10.3390/bios13040416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
Biosensors are analytical tools that can be used as simple, real-time, and effective devices in clinical diagnosis, food analysis, and environmental monitoring. Nanoscale functional materials possess unique properties such as a large surface-to-volume ratio, making them useful for biomedical diagnostic purposes. Nanoengineering has resulted in the increased use of nanoscale functional materials in biosensors. Various types of nanostructures i.e., 0D, 1D, 2D, and 3D, have been intensively employed to enhance biosensor selectivity, limit of detection, sensitivity, and speed of response time to display results. In particular, carbon nanotubes and nanofibers have been extensively employed in electrochemical biosensors, which have become an interdisciplinary frontier between material science and viral disease detection. This review provides an overview of the current research activities in nanofiber-based electrochemical biosensors for diagnostic purposes. The clinical applications of these nanobiosensors are also highlighted, along with a discussion of the future directions for these materials in diagnostics. The aim of this review is to stimulate a broader interest in developing nanofiber-based electrochemical biosensors and improving their applications in disease diagnosis. In this review, we summarize some of the most recent advances achieved in point of care (PoC) electrochemical biosensor applications, focusing on new materials and modifiers enabling biorecognition that have led to improved sensitivity, specificity, stability, and response time.
Collapse
Affiliation(s)
- Faiza Jan Iftikhar
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
| | - Afzal Shah
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Qamar Wali
- School of Applied Sciences & Humanities, National University of Technology, Islamabad 44000, Pakistan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Tayyaba Kokab
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
3
|
Nate Z, Gill AA, Chauhan R, Karpoormath R. Recent progress in electrochemical sensors for detection and quantification of malaria. Anal Biochem 2022; 643:114592. [DOI: 10.1016/j.ab.2022.114592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 12/30/2022]
|
4
|
|
5
|
Wang W, Dong RL, Gu D, He JA, Yi P, Kong SK, Ho HP, Loo J, Wang W, Wang Q. Antibody-free rapid diagnosis of malaria in whole blood with surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. Adv Med Sci 2020; 65:86-92. [PMID: 31923771 DOI: 10.1016/j.advms.2019.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 11/25/2022]
Abstract
PURPOSE The aim of this study is to establish a rapid antibody-free diagnostic method of malaria infection with Plasmodium falciparum and Plasmodium vivax in whole blood with Surface-enhanced Raman Spectroscopy using Nanostructured Gold Substrate. MATERIALS AND METHODS The blood samples collected from patients were first lysed and centrifuged before dropping on the gold nano-structure (AuNS) substrate. Malaria diagnosis was performed by detecting Raman peaks from Surface Enhanced Raman Spectroscopy (SERS) with a 532 nm laser excitation. RESULTS Raman peaks at 1370 cm-1, 1570 cm-1, and 1627 cm-1, known to have high specificity against interference from other mosquito-borne diseases such as Dengue and West Nile virus infection, were selected as the fingerprint markers associated with P. falciparum and P. vivax infection. The limit of detection was 10-5 dilution, corresponding to the concentration of parasitized blood cells of 100/mL. A total number of 25 clinical samples, including 5 from patients with P. falciparum infection, 10 with P. vivax infection and 10 from healthy volunteers, were evaluated to support its clinical practical use. The whole assay on malaria detection took 30 min to complete. CONCLUSIONS While the samples analyzed in this work have strong clinical relevance, we have clearly demonstrated that sensitive malaria detection using AuNS-SERS is a practical direction for rapid in-field diagnosis of malaria infection.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Rui-Ling Dong
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Dayong Gu
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jian-An He
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen Customs District, Shenzhen, China
| | - Pin Yi
- Department of Laboratory Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Siu-Kai Kong
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Jacky Loo
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong Special Administrative Region.
| | - Wen Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Krampa FD, Aniweh Y, Kanyong P, Awandare GA. Recent Advances in the Development of Biosensors for Malaria Diagnosis. SENSORS (BASEL, SWITZERLAND) 2020; 20:E799. [PMID: 32024098 PMCID: PMC7038750 DOI: 10.3390/s20030799] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/19/2019] [Accepted: 12/24/2019] [Indexed: 02/07/2023]
Abstract
The impact of malaria on global health has continually prompted the need to develop more effective diagnostic strategies that could overcome deficiencies in accurate and early detection. In this review, we examine the various biosensor-based methods for malaria diagnostic biomarkers, namely; Plasmodium falciparum histidine-rich protein 2 (PfHRP-2), parasite lactate dehydrogenase (pLDH), aldolase, glutamate dehydrogenase (GDH), and the biocrystal hemozoin. The models that demonstrate a potential for field application have been discussed, looking at the fabrication and analytical performance characteristics, including (but not exclusively limited to): response time, sensitivity, detection limit, linear range, and storage stability, which are first summarized in a tabular form and then described in detail. The conclusion summarizes the state-of-the-art technologies applied in the field, the current challenges and the emerging prospects for malaria biosensors.
Collapse
Affiliation(s)
- Francis D. Krampa
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (Y.A.); (P.K.); (G.A.A.)
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| | - Yaw Aniweh
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (Y.A.); (P.K.); (G.A.A.)
| | - Prosper Kanyong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (Y.A.); (P.K.); (G.A.A.)
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, P.O. Box LG 25, Legon, Accra, Ghana; (Y.A.); (P.K.); (G.A.A.)
- Department of Biochemistry, Cell & Molecular Biology, University of Ghana, P.O. Box LG 54, Legon, Accra, Ghana
| |
Collapse
|
7
|
Ultrasensitive and label-free biosensor for the detection of Plasmodium falciparum histidine-rich protein II in saliva. Sci Rep 2019; 9:17495. [PMID: 31767887 PMCID: PMC6877566 DOI: 10.1038/s41598-019-53852-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/06/2019] [Indexed: 11/08/2022] Open
Abstract
Malaria elimination is a global public health priority. To fulfil the demands of elimination diagnostics, we have developed an interdigitated electrode sensor platform targeting the Plasmodium falciparum Histidine Rich Protein 2 (PfHRP2) protein in saliva samples. A protocol for frequency-specific PfHRP2 detection in phosphate buffered saline was developed, yielding a sensitivity of 2.5 pg/mL based on change in impedance magnitude of the sensor. This protocol was adapted and optimized for use in saliva with a sensitivity of 25 pg/mL based on change in resistance. Further validation demonstrated detection in saliva spiked with PfHRP2 from clinical isolates in 8 of 11 samples. With a turnaround time of ~2 hours, the label-free platform based on impedance sensors has the potential for miniaturization into a point-of-care diagnostic device for malaria elimination.
Collapse
|
8
|
Noah NM, Ndangili PM. Current Trends of Nanobiosensors for Point-of-Care Diagnostics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:2179718. [PMID: 31886019 PMCID: PMC6925704 DOI: 10.1155/2019/2179718] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/03/2019] [Accepted: 09/28/2019] [Indexed: 05/24/2023]
Abstract
In order to provide better-quality health care, it is very important that high standards of health care management are achieved by making timely decisions based on rapid diagnostics, smart data analysis, and informatics analysis. Point-of-care testing ensures fast detection of analytes near to the patients facilitating a better disease diagnosis, monitoring, and management. It also enables quick medical decisions since the diseases can be diagnosed at an early stage which leads to improved health outcomes for the patients enabling them to start early treatment. In the recent past, various potential point-of-care devices have been developed and they are paving the way to next-generation point-of-care testing. Biosensors are very critical components of point-of-care devices since they are directly responsible for the bioanalytical performance of an essay. As such, they have been explored for their prospective point-of-care applications necessary for personalized health care management since they usually estimate the levels of biological markers or any chemical reaction by producing signals mainly associated with the concentration of an analyte and hence can detect disease causing markers such as body fluids. Their high selectivity and sensitivity have allowed for early diagnosis and management of targeted diseases; hence, facilitating timely therapy decisions and combination with nanotechnology can improve assessment of the disease onset and its progression and help to plan for treatment of many diseases. In this review, we explore how nanotechnology has been utilized in the development of nanosensors and the current trends of these nanosensors for point-of-care diagnosis of various diseases.
Collapse
Affiliation(s)
- Naumih M. Noah
- School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi, Kenya
| | - Peter M. Ndangili
- Department of Chemical Science and Technology (DCST), Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
9
|
Obisesan OR, Adekunle AS, Oyekunle JAO, Sabu T, Nkambule TTI, Mamba BB. Development of Electrochemical Nanosensor for the Detection of Malaria Parasite in Clinical Samples. Front Chem 2019; 7:89. [PMID: 30859097 PMCID: PMC6397833 DOI: 10.3389/fchem.2019.00089] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 02/04/2019] [Indexed: 12/24/2022] Open
Abstract
In this study, electrochemical nanosensors were developed from the synthesized metal oxide (MO) nanoparticles by supporting it on a gold electrode (Au). The activity of the developed nanosensor toward the detection of malaria biomarker (β-hematin) was determined and the optimum conditions at which the maximum detection and quantification occurred were established. β-Hematin current response at the sensors was higher when compared with the bare Au electrode and followed the order Au-CuO (C) > Au-CuO (M) > Au-Fe2O3 (M) > Au-Fe2O3 (C) > Au-Al2O3 (M) > Au-Al2O3 (C) > bare Au. The developed sensors were stable with a relatively low current drop (10.61-17.35 %) in the analyte. Au-CuO sensor had the best performance toward the biomarker and quantitatively detected P. berghei in infected mice's serum samples at 3.60-4.8 mM and P. falciparum in human blood serum samples at 0.65-1.35 mM concentration.
Collapse
Affiliation(s)
- Olaoluwa R Obisesan
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria.,International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India
| | | | - John A O Oyekunle
- Department of Chemistry, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Thomas Sabu
- International and Inter University Center for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, India
| | - Thabo T I Nkambule
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, Univeristy of South Africa, Johannesburg, South Africa
| | - Bhekie B Mamba
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, Univeristy of South Africa, Johannesburg, South Africa
| |
Collapse
|
10
|
Hemben A, Ashley J, Tothill IE. An immunosensor for parasite lactate dehydrogenase detection as a malaria biomarker – Comparison with commercial test kit. Talanta 2018; 187:321-329. [DOI: 10.1016/j.talanta.2018.04.086] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 11/25/2022]
|
11
|
Development of an Immunosensor for PfHRP 2 as a Biomarker for Malaria Detection. BIOSENSORS-BASEL 2017; 7:bios7030028. [PMID: 28718841 PMCID: PMC5618034 DOI: 10.3390/bios7030028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/17/2022]
Abstract
Plasmodium falciparum histidine-rich protein 2 (PfHRP 2) was selected in this work as the biomarker for the detection and diagnosis of malaria. An enzyme-linked immunosorbent assay (ELISA) was first developed to evaluate the immunoreagent’s suitability for the sensor’s development. A gold-based sensor with an integrated counter and an Ag/AgCl reference electrode was first selected and characterised and then used to develop the immunosensor for PfHRP 2, which enables a low cost, easy to use, and sensitive biosensor for malaria diagnosis. The sensor was applied to immobilise the anti-PfHRP 2 monoclonal antibody as the capture receptor. A sandwich ELISA assay format was constructed using horseradish peroxidase (HRP) as the enzyme label, and the electrochemical signal was generated using a 3, 3′, 5, 5′tetramethyl-benzidine dihydrochloride (TMB)/H2O2 system. The performance of the assay and the sensor were optimised and characterised, achieving a PfHRP 2 limit of detection (LOD) of 2.14 ng·mL−1 in buffer samples and 2.95 ng∙mL−1 in 100% spiked serum samples. The assay signal was then amplified using gold nanoparticles conjugated detection antibody-enzyme and a detection limit of 36 pg∙mL−1 was achieved in buffer samples and 40 pg∙mL−1 in serum samples. This sensor format is ideal for malaria detection and on-site analysis as a point-of-care device (POC) in resource-limited settings where the implementation of malaria diagnostics is essential in control and elimination efforts.
Collapse
|
12
|
Paul K B, Panigrahi AK, Singh V, Singh SG. A multi-walled carbon nanotube–zinc oxide nanofiber based flexible chemiresistive biosensor for malaria biomarker detection. Analyst 2017; 142:2128-2135. [DOI: 10.1039/c7an00243b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A flexible, lightweight and disposable chemiresistive biosensor for label free detection of the malaria biomarker.
Collapse
Affiliation(s)
- Brince Paul K
- Department of Electrical Engineering
- Indian Institute of Technology
- Hyderabad
- India
- Department of Biomedical Engineering
| | | | | | - Shiv Govind Singh
- Department of Electrical Engineering
- Indian Institute of Technology
- Hyderabad
- India
| |
Collapse
|
13
|
Menti C, Henriques JAP, Missell FP, Roesch-Ely M. Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins. Appl Microbiol Biotechnol 2016; 100:6149-6163. [DOI: 10.1007/s00253-016-7624-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/02/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
|
14
|
Brince Paul K, Kumar S, Tripathy S, Vanjari SRK, Singh V, Singh SG. A highly sensitive self assembled monolayer modified copper doped zinc oxide nanofiber interface for detection of Plasmodium falciparum histidine-rich protein-2: Targeted towards rapid, early diagnosis of malaria. Biosens Bioelectron 2016; 80:39-46. [PMID: 26803412 DOI: 10.1016/j.bios.2016.01.036] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 12/21/2022]
Abstract
Rapid, ultrasensitive diagnostic/triaging kits for early detection of malarial parasites are critical for prevention of malarial epidemic, especially in developing and tropical countries. Unlike traditional microscopic diagnosis, these kits rely on the detection of antigens specific to malarial parasites. One such antigen which is routinely used in these diagnostic kits is Histidine-rich protein-2; a protein synthesized and released into the blood stream by the parasite Plasmodium falciparum. In this paper, we demonstrate an ultrasensitive nanobiosensor detection platform for Histidine-rich protein-2 having a limit of detection of attogram/ml. This nanobiosensor platform comprises of Mercaptopropylphosphonic acid functionalized copper doped zinc oxide nanofibers synthesized by electrospinning technique. Ultrasensitivity of attogram/ml can be attributed to the complimentary effects of Mercaptopropylphosphonic acid and copper doping in zinc oxide. Mercaptopropylphosphonic acid enhances the functional groups required for immobilizing antibody. Copper doping in zinc oxide not only increases the conductivity of the nanofibers but also pre-concentrates the target analyte onto the Mercaptopropylphosphonic acid treated nanofiber surface due to inherent electric field generated at the copper/zinc oxide heterojunction interface. The impedimetric detection response of copper-doped zinc oxide nanofiber modified electrode shows excellent sensitivity (28.5 kΩ/(gm/ml)/cm(2)) in the detection ranges of 10 ag/ml-10 µg/ml, and a detection limit of 6 attogram/ml. In addition, the proposed biosensor is highly selective to targeted HRP2 protein with a relative standard deviation of 1.9% in the presence of various interference of nonspecific molecules. To the best of our knowledge, this biosensor shows the lowest detection limit of malarial parasites reported in the literature spanning different nanomaterials and different detection mechanisms. Since the nanobiosensor platform is based on immunoassay technique, with a little modification, it can be extended for developing point-of-care diagnostic devices for several biomarkers of importance.
Collapse
Affiliation(s)
- K Brince Paul
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Sanni Kumar
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | - Suryasnata Tripathy
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India
| | | | - Vikrant Singh
- School of Medicine, University of California, Davis, USA
| | - Shiv Govind Singh
- Department of Electrical Engineering, Indian Institute of Technology, Hyderabad, India.
| |
Collapse
|
15
|
Kharisov BI, Kharissova OV, García BO, Méndez YP, de la Fuente IG. State of the art of nanoforest structures and their applications. RSC Adv 2015. [DOI: 10.1039/c5ra22738k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Forest-like nanostructures, their syntheses, properties, and applications are reviewed.
Collapse
|
16
|
Gikunoo E, Abera A, Woldesenbet E. Achieving Ultra-Low Detection Limit Using Nanofiber Labels for Rapid Disease Detection. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/aid.2014.44030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|