1
|
Sraphet S, Javadi B. Prospective identification of extracellular triacylglycerol hydrolase with conserved amino acids in Amycolatopsis tolypomycina's high G+C genomic dataset. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2025; 45:e00869. [PMID: 39758972 PMCID: PMC11697127 DOI: 10.1016/j.btre.2024.e00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 11/03/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025]
Abstract
Extracellular triacylglycerol hydrolases (ETH) play a critical role for microorganisms, acting as essential tools for lipid breakdown and survival in challenging environments. The pursuit of more effective ETH genes and enzymes through evolution holds significant potential for enhancing living conditions. This study employs a proteogenomic approach to identify high G+C ETH in a notable Gram-positive bacterium, Amycolatopsis tolypomycina. Utilizing knowledge from genome and machine learning algorithms, prospective ETH genes/enzymes were identified. Notably, the ETH structural conserved accessibility to solvent clearly indicated the specific sixteen residues (GLY50, PRO93, GLY141, ASP148, GLY151, ASP172, ALA176, GLY195, TYR196, SER197, GLN198, GLY199, GLY200, GLY225, PRO327, ASP336) with no frequency. By pinpointing key residues and understanding their role, this study sets the stage for enhancing ETH performance through computational proteogenomic and contributes to the broader field of enzyme engineering, facilitating the development of more efficient and versatile ETH enzymes tailored to specific industrial or environmental contexts.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| |
Collapse
|
2
|
Zhou H, Pang XY, Xie X, Phillips DL, Gong HY, Sessler JL, Jiang W. Amide-Based Naphthotubes as Biomimetic Receptors for Acetal Protection and Other Substrates in Water via Noncovalent Interactions. J Am Chem Soc 2024; 146:34842-34851. [PMID: 39637361 DOI: 10.1021/jacs.4c13907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active compound protection can allow inherently unstable molecules to be stabilized and latent reactivity to be masked. Synthetic receptors are attractive in terms of providing such protection. Nevertheless, preserving the activity and functionality of organic molecules in water poses a challenge. Here, we show that biomimetic receptors, specifically amide naphthotubes and an amide anthryltube, allow the efficient preservation of functional organic molecules in water. In particular, the amide naphthotubes were found to extend the half-lives of acetal-containing substrates ("acetals") against acid-catalyzed hydrolysis by up to 3000 times. This kinetic protection effect was ascribed to hydrogen bond-based recognition of the organic guests. A substrate dependence was seen that was further exploited to achieve the kinetic resolution of acetal isomers. To the best of our knowledge, the present study constitutes one of the most effective acetal protection strategies reported to date. The recognition-based protection approach reported here appears generalizable as evidenced by the protection of eight different substrates against six distinct chemical reactions. Based on the present findings, we propose that it is possible to design receptors that provide for the protection of specific substrates under a variety of reaction conditions including those carried out in water.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin-Yu Pang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaojiang Xie
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, P. R. China
| | - Han-Yuan Gong
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Wei Jiang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Trivedi SP, Dwivedi S, Trivedi A, Khan AA, Singh S, Yadav KK, Kumar V, Dwivedi S, Tiwari V, Awasthi Y. Dietary inclusion of Withania somnifera and Asparagus racemosus induces growth, activities of digestive enzymes, and transcriptional modulation of MyoD, MyoG, Myf5, and MRF4 genes in fish, Channa punctatus. Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110944. [PMID: 38237655 DOI: 10.1016/j.cbpb.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
The present study explores growth potential of two medicinal herbs, Withania somnifera (Ashwagandha or 'A') and Asparagus racemosus (Shatavari or 'S') after their dietary inclusion in fish, Channa punctatus (13.5 ± 2 g; 11.5 ± 1 cm). Three hundred well-acclimatized fish were distributed into 10 groups- C (Control), S1 (1% S), S2 (2% S), S3 (3% S), A1 (1% A), A2 (2% A), A3 (3% A), AS1 (1% A and S), AS2 (2% A and S), and AS3 (3% A and S), each having 10 specimens. Fish were fed with these diets for 60 days. The study was performed in triplicate. Growth indices- weight gain (WG), specific growth rate percentage (SGR%), feed intake (FI), and condition factor (CF), after 30 and 60 days, were found significantly (p < 0.05) up-regulated in all the groups, except S1, when compared to the C. A significant (p < 0.05) increase in final body weight (FBW) was noticed in all the groups, except S1, after 60 days. Relative to the control group, activities of lipase and amylase in the gut tissue were elevated in all groups, at both sampling times, with the exception of lipase in S1 at 60 days, and amylase in S1 at day 30 and day 60 and S2 at day 60. The mRNA expression of myogenic regulatory factors (MRFs) was also found to be significantly (p < 0.05) up-regulated with the highest fold changes recorded in AS3 for myoD (3.93 ± 0.91); myoG (6.71 ± 0.30); myf5 (4.40 ± 0.33); MRF4 (4.94 ± 0.21) in comparison to the C.
Collapse
Affiliation(s)
- Sunil P Trivedi
- Centre of Excellence in Fish Nutrigenomics, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Shikha Dwivedi
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Abha Trivedi
- Department of Animal Science, MJP Rohilkhand University, Bareilly 243006, India
| | - Adeel Ahmad Khan
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Shefalee Singh
- Environmental Toxicology & Bioremediation Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India
| | - Kamlesh K Yadav
- Department of Zoology, Government Degree College, Bakkha Kheda, Unnao 209801, India
| | - Vivek Kumar
- Department of Zoology, Isabella Thoburn PG College, Lucknow 226007, India
| | - Shraddha Dwivedi
- Department of Zoology, Netaji Subhash Chandra Bose Govt. Girls P. G. College, Aliganj, Lucknow, India
| | - Vidyanand Tiwari
- Institute of Food Processing and Technology, University of Lucknow, Lucknow 226007, India
| | - Yashika Awasthi
- Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Ivanović M, Knez Ž, Leitgeb M. Influence of Supercritical Carbon Dioxide on the Activity and Conformational Changes of α-Amylase, Lipase, and Peroxidase in the Solid State Using White Wheat Flour as an Example. Foods 2023; 12:4499. [PMID: 38137304 PMCID: PMC10743174 DOI: 10.3390/foods12244499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Green technologies using renewable and alternative sources, including supercritical carbon dioxide (sc-CO2), are becoming a priority for researchers in a variety of fields, including the control of enzyme activity which, among other applications, is extremely important in the food industry. Namely, extending shelf life of e.g., flour could be reached by tuning the present enzymes activity. In this study, the effect of different sc-CO2 conditions such as temperature (35-50 °C), pressure (200 bar and 300 bar), and exposure time (1-6 h) on the inactivation and structural changes of α-amylase, lipase, and horseradish peroxidase (POD) from white wheat flour and native enzymes was investigated. The total protein (TPC) content and residual activities of the enzymes were determined by standard spectrophotometric methods, while the changes in the secondary structures of the enzymes were determined by circular dichroism spectrometry (CD). The present work is therefore concerned for the first time with the study of the stability and structural changes of the enzyme molecules dominant in white wheat flour under sc-CO2 conditions at different pressures and temperatures. In addition, the changes in aggregation or dissociation of the enzyme molecules were investigated based on the changes in particle size distribution and ζ-potential. The results of the activity assays showed a decrease in the activity of native POD and lipase under optimal exposure conditions (6 h and 50 °C; and 1 h and 50 °C) by 22% and 16%, respectively. In contrast, no significant changes were observed in α-amylase activity. Consequently, analysis of the CD spectra of POD and lipase confirmed a significant effect on secondary structure damage (changes in α-helix, β-sheet, and β-turn content), whereas the secondary structure of α-amylase retained its original configuration. Moreover, the changes in particle size distribution and ζ-potential showed a significant effect of sc-CO2 treatment on the aggregation and dissociation of the selected enzymes. The results of this study confirm that sc-CO2 technology can be effectively used as an environmentally friendly technology to control the activity of major flour enzymes by altering their structures.
Collapse
Affiliation(s)
- Milena Ivanović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia; (M.I.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
5
|
Pliego-Sandoval JE, Díaz-Barbosa A, Reyes-Nava LA, Angeles Camacho-Ruiz M, Iñiguez-Muñoz LE, Pinto-Pérez O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. BIOSENSORS 2023; 13:826. [PMID: 37622912 PMCID: PMC10452911 DOI: 10.3390/bios13080826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Overweight and obesity promote diabetes and heart disease onset. Triglycerides are key biomarkers for cardiovascular disease, strokes, and other health issues. Scientists have devised methods and instruments for the detection of these molecules in liquid samples. In this study, an enzymatic biosensor was developed using an Arduino-based microfluidic platform, wherein a lipolytic enzyme was immobilized on an ethylene-vinyl acetate polymer through physical adsorption. This low-cost optical biosensor employed a spectrophotometric transducer and was assessed in liquid samples to indirectly detect triglycerides and fatty acids using p-nitrophenol as an indicator. The average triglyceride level detected in the conducted experiments was 47.727 mg/dL. The biosensor exhibited a percentage of recovery of 81.12% and a variation coefficient of 0.791%. Furthermore, the biosensor demonstrated the ability to detect triglyceride levels without the need for sample dilution, ranging from 7.6741 mg/dL to 58.835 mg/dL. This study successfully developed an efficient and affordable enzymatic biosensor prototype for triglyceride and fatty acid detection. The lipolytic enzyme immobilization on the polymer substrate provided a stable and reproducible detection system, rendering this biosensor an exciting option for the detection of these molecules.
Collapse
Affiliation(s)
- Jorge E. Pliego-Sandoval
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Arturo Díaz-Barbosa
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Luis A. Reyes-Nava
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - María Angeles Camacho-Ruiz
- Centro Universitario del Norte, Laboratorio de Investigación en Biotecnología, Universidad de Guadalajara, Colotlán 46200, Jalisco, Mexico;
| | - Laura Elena Iñiguez-Muñoz
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| | - Osmar Pinto-Pérez
- Centro Universitario del Sur, Departamento de Ciencias Computacionales e Innovación Tecnológica, Universidad de Guadalajara, Av. Enrique Arreola Silva No. 883, Colón, Cd Guzmán 49000, Jalisco, Mexico; (A.D.-B.); (L.A.R.-N.); (L.E.I.-M.); (O.P.-P.)
| |
Collapse
|
6
|
Pareja Tello R, Wang S, Fontana F, Correia A, Molinaro G, López Cerdà S, Hietala S, Hirvonen J, Barreto G, Santos HA. Fabrication of hydrogel microspheres via microfluidics using inverse electron demand Diels-Alder click chemistry-based tetrazine-norbornene for drug delivery and cell encapsulation applications. Biomater Sci 2023. [PMID: 37334482 DOI: 10.1039/d3bm00292f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Microfluidic on-chip production of polymeric hydrogel microspheres (MPs) can be designed for the loading of different biologically active cargos and living cells. Among different gelation strategies, ionically crosslinked microspheres generally show limited mechanical properties, meanwhile covalently crosslinked microspheres often require the use of crosslinking agents or initiators with limited biocompatibility. Inverse electron demand Diels Alder (iEDDA) click chemistry is a promising covalent crosslinking method with fast kinetics, high chemoselectivity, high efficiency and no cross-reactivity. Herein, in situ gellable iEDDA-crosslinked polymeric hydrogel microspheres are developed via water-in-oil emulsification (W/O) glass microfluidics. The microspheres are composed of two polyethylene glycol precursors modified with either tetrazine or norbornene as functional moieties. Using a single co-flow glass microfluidic platform, homogenous MPs of sizes 200-600 μm are developed and crosslinked within 2 minutes. The rheological properties of iEDDA crosslinked bulk hydrogels are maintained with a low swelling degree and a slow degradation behaviour under physiological conditions. Moreover, a high-protein loading capacity can be achieved, and the encapsulation of mammalian cells is possible. Overall, this work provides the possibility of developing microfluidics-produced iEDDA-crosslinked MPs as a potential drug vehicle and cell encapsulation system in the biomedical field.
Collapse
Affiliation(s)
- Rubén Pareja Tello
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Giuseppina Molinaro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sandra López Cerdà
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Sami Hietala
- Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Goncalo Barreto
- Clinicum, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 8, 00014, Helsinki, Finland
- Orton Orthopedic Hospital, Tenholantie 10, 00280, Helsinki, Finland
- Medical Ultrasonics Laboratory (MEDUSA), Department of Neuroscience and Biomedical Engineering, Aalto University, 02150, Espoo, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
7
|
Ćehić M, Brkljača Z, Filić Ž, Crnolatac I, Vujaklija D, Bakarić D. (Un)coupling the factors contributing to the interfacial activation of Streptomyces rimosus lipase: computational and spectrophotometric study. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2145304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Mirsada Ćehić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Zlatko Brkljača
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Želimira Filić
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivo Crnolatac
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Dušica Vujaklija
- Division for Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Danijela Bakarić
- Division for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
KOIZUMI N, NISHIYAMA R, MASADOME T. Sequential Injection Analysis of Butyrylcholinesterase Using Butyrylcholine Ion-Selective Electrode Detector. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Narimasa KOIZUMI
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| | - Ryusei NISHIYAMA
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| | - Takashi MASADOME
- Department of Applied Chemistry, Faculty of Engineering, Shibaura Institute of Technology
| |
Collapse
|
9
|
Application of Hierarchical Clustering to Analyze Solvent-Accessible Surface Area Patterns in Amycolatopsis lipases. BIOLOGY 2022; 11:biology11050652. [PMID: 35625380 PMCID: PMC9138565 DOI: 10.3390/biology11050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Solvent-Accessible Surface Area (SASA) as the one dimensional structure property of the protein considers as the measuring the exposure of an amino acid residue to the solvent in one protein. It is an important structural property as the active sites of proteins are mostly located on the protein surfaces. The aim of this paper is to provide the clear information on different Amycolatopsis eburnea lipases based on the SASA patterns. This information could help in recognizing the structural stability and conformation as well as precise clustering them for revealing lipase evolution. Abstract The wealth of biological databases provides a valuable asset to understand evolution at a molecular level. This research presents the machine learning approach, an unsupervised agglomerative hierarchical clustering analysis of invariant solvent accessible surface areas and conserved structural features of Amycolatopsis eburnea lipases to exploit the enzyme stability and evolution. Amycolatopsis eburnea lipase sequences were retrieved from biological database. Six structural conserved regions and their residues were identified. Total Solvent Accessible Surface Area (SASA) and structural conserved-SASA with unsupervised agglomerative hierarchical algorithm were clustered lipases in three distinct groups (99/96%). The minimum SASA of nucleus residues was related to Lipase-4. It is clearly shown that the overall side chain of SASA was higher than the backbone in all enzymes. The SASA pattern of conserved regions clearly showed the evolutionary conservation areas that stabilized Amycolatopsis eburnea lipase structures. This research can bring new insight in protein design based on structurally conserved SASA in lipases with the help of a machine learning approach.
Collapse
|
10
|
Cystobasidium psychroaquaticum as a new promising source of valuable bioactive molecules. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Zlatev R, Stoytcheva M, Gochev V, Velkova Z, Valdez B, Montero G. Rapid disposable lipase activity sensor for automatic industrial application. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2020.1856719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Roumen Zlatev
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, México
| | - Margarita Stoytcheva
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, México
| | - Velizar Gochev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University “P. Hilendarski”, Plovdiv, Bulgaria
| | - Zdravka Velkova
- Department of Chemical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Benjamín Valdez
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, México
| | - Gisela Montero
- Instituto de Ingeniería, Universidad Autónoma de Baja California, Mexicali, México
| |
Collapse
|
12
|
Myrtollari K, Katsoulakis N, Zarafeta D, Pavlidis IV, Skretas G, Smonou I. Activity and specificity studies of the new thermostable esterase EstDZ2. Bioorg Chem 2020; 104:104214. [PMID: 32927128 DOI: 10.1016/j.bioorg.2020.104214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
In this paper, we study the activity and specificity of EstDZ2, a new thermostable carboxyl esterase of unknown function, which was isolated from a metagenome library from a Russian hot spring. The biocatalytic reaction employing EstDZ2 proved to be an efficient method for the hydrolysis of aryl p-, o- or m-substituted esters of butyric acid and esters of secondary alcohols. Docking studies revealed structural features of the enzyme that led to activity differences among the different substrates.
Collapse
Affiliation(s)
- Kamela Myrtollari
- Department of Chemistry, University of Crete, University Campus-Voutes, 70013 Heraklion, Crete, Greece
| | - Nikolaos Katsoulakis
- Department of Chemistry, University of Crete, University Campus-Voutes, 70013 Heraklion, Crete, Greece
| | - Dimitra Zarafeta
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, University Campus-Voutes, 70013 Heraklion, Crete, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Ioulia Smonou
- Department of Chemistry, University of Crete, University Campus-Voutes, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
13
|
Chandra P, Enespa, Singh R, Arora PK. Microbial lipases and their industrial applications: a comprehensive review. Microb Cell Fact 2020; 19:169. [PMID: 32847584 PMCID: PMC7449042 DOI: 10.1186/s12934-020-01428-8] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Lipases are very versatile enzymes, and produced the attention of the several industrial processes. Lipase can be achieved from several sources, animal, vegetable, and microbiological. The uses of microbial lipase market is estimated to be USD 425.0 Million in 2018 and it is projected to reach USD 590.2 Million by 2023, growing at a CAGR of 6.8% from 2018. Microbial lipases (EC 3.1.1.3) catalyze the hydrolysis of long chain triglycerides. The microbial origins of lipase enzymes are logically dynamic and proficient also have an extensive range of industrial uses with the manufacturing of altered molecules. The unique lipase (triacylglycerol acyl hydrolase) enzymes catalyzed the hydrolysis, esterification and alcoholysis reactions. Immobilization has made the use of microbial lipases accomplish its best performance and hence suitable for several reactions and need to enhance aroma to the immobilization processes. Immobilized enzymes depend on the immobilization technique and the carrier type. The choice of the carrier concerns usually the biocompatibility, chemical and thermal stability, and insolubility under reaction conditions, capability of easy rejuvenation and reusability, as well as cost proficiency. Bacillus spp., Achromobacter spp., Alcaligenes spp., Arthrobacter spp., Pseudomonos spp., of bacteria and Penicillium spp., Fusarium spp., Aspergillus spp., of fungi are screened large scale for lipase production. Lipases as multipurpose biological catalyst has given a favorable vision in meeting the needs for several industries such as biodiesel, foods and drinks, leather, textile, detergents, pharmaceuticals and medicals. This review represents a discussion on microbial sources of lipases, immobilization methods increased productivity at market profitability and reduce logistical liability on the environment and user.
Collapse
Affiliation(s)
- Prem Chandra
- Food Microbiology & Toxicology, Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, Uttar Pradesh 226025 India
| | - Enespa
- Department of Plant Pathology, School for Agriculture, SMPDC, University of Lucknow, Lucknow, 226007 U.P. India
| | - Ranjan Singh
- Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| | - Pankaj Kumar Arora
- Department of Microbiology, School for Biomedical and Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central) University, Lucknow, U.P. India
| |
Collapse
|
14
|
Structural and functional insights about unique extremophilic bacterial lipolytic enzyme from metagenome source. Int J Biol Macromol 2020; 152:593-604. [DOI: 10.1016/j.ijbiomac.2020.02.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/09/2020] [Accepted: 02/19/2020] [Indexed: 11/20/2022]
|
15
|
|
16
|
Simple impedimetric sensor for rapid lipase activity quantification. Talanta 2019; 203:161-167. [PMID: 31202322 DOI: 10.1016/j.talanta.2019.05.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022]
Abstract
A simple and rapid impedimetric sensor applicable for industrial lipase activity quantification was developed and characterized. It is based on the lipase catalyzed degradation by hydrolysis of a thin nanocomposite substrate sensitive layer deposited on a PCB stick electrode usable as disposable or regenerable. The sensitive layer degradation rate was evaluated by the impedance changes registration along time resulting from its thickness diminution applying a small amplitude AC voltage with a constant frequency. The AC current phase shift variations along the time caused by the impedance changes were registered as s sensor response. The sensor was characterized in terms of linear quantification range, LOD, precision and quantification time. The response time was found to be from 80 to 6 s for the linear concentration range from 0.99x10-2 to 1.68 U.S.P. U mL-1 with relative errors from 3.75% to 1.24% respectively and a LOD of 8x10-3 U.S.P. U mL-1. Finally, lipase spiked whey samples taken from milk industry were quantified and the results were validated by a titrimetric method revealing a good agreement (relative error less than 4.5%).
Collapse
|
17
|
Kowacz M, Warszyński P. Beyond esterase-like activity of serum albumin. Histidine-(nitro)phenol radical formation in conversion cascade of p
-nitrophenyl acetate and the role of infrared light. J Mol Recognit 2019; 32:e2780. [DOI: 10.1002/jmr.2780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/07/2018] [Accepted: 01/07/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Magdalena Kowacz
- Department of Bioengineering; University of Washington; Seattle Washington USA
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences; Krakow Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences; Krakow Poland
| |
Collapse
|
18
|
Yang Y, Ghatge S, Hur HG. Characterization of a novel thermostable carboxylesterase from thermoalkaliphilic bacterium Bacillus thermocloaceae. Biosci Biotechnol Biochem 2019; 83:882-891. [PMID: 30739541 DOI: 10.1080/09168451.2019.1574555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A novel thermostable carboxylesterase (Est5250) of thermoalkaliphilic bacterium Bacillus thermocloaceae was heterologously expressed in Escherichia coli and its biochemical properties were investigated. Est5250 showed optimum esterase activity at 60 °C and pH 8.0. The enzyme was highly thermostable at 60 °C, interestingly, the thermostability was enhanced in the presence of Ca2+, retaining more than 60% of its original activity after 12 h of pre-incubation. Est5250 was active in the presence of 1% (v/v) of organic solvents and 0.1% (v/v) of non-ionic detergents. The enzyme activity was significantly enhanced up to 167% and 159% in the presence of 2-mercaptoethanol and dithiothreitol, respectively. Est5250 showed high substrate specificity for short-chain p-nitrophenyl-esters. Kinetic constants, Km and kcat, for p-nitrophenyl-acetate were 185.8 μM and 186.6 s-1, respectively. Est5250 showed outstanding thermostability and tolerance to various organic solvents under thermoalkaliphilic conditions, suggesting that it would be a highly suitable biocatalyst for various biotechnological applications. Abbreviations: B. thermocloaceae sp.: Bacillus thermocloaceae; E. coli: Escherichia coli; NP: nitrophenyl; DMSO: dimethyl sulfoxide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; DMF: dimethyl formamide; EGTA: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; CTAB: cetrimonium bromide; PMSF: phenylmethylsulfonyl fluoride; DEPC: diethyl pyrocarbonate; 2-ME: 2-mercaptoethanol; DTT: dithiothreitol.
Collapse
Affiliation(s)
- Youri Yang
- a School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea
| | - Sunil Ghatge
- a School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea
| | - Hor-Gil Hur
- a School of Earth Sciences and Environmental Engineering , Gwangju Institute of Science and Technology (GIST) , Gwangju , Republic of Korea
| |
Collapse
|
19
|
Biosensors and Bioassays Based on Lipases, Principles and Applications, a Review. Molecules 2019; 24:molecules24030616. [PMID: 30744203 PMCID: PMC6384989 DOI: 10.3390/molecules24030616] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/17/2022] Open
Abstract
Lipases are enzymes responsible for the conversion of triglycerides and other esterified substrates, they are involved in the basic metabolism of a wide number of organisms, from a simple microorganism and to mammals. They also have broad applicability in many fields from which industrial biotechnology, the production of cleaning agents, and pharmacy are the most important. The use of lipases in analytical chemistry where it can serve as a part of biosensors or bioassays is an application of growing interest and has become another important use. This review is focused on the description of lipases chemistry, their current applications and the methods for their assay measurement. Examples of bioassays and biosensors, including their physical and chemical principles, performance for specific substrates, and discussion of their relevance, are given in this work.
Collapse
|
20
|
Patel N, Rai D, Shahane S, Mishra U. Lipases: Sources, Production, Purification, and Applications. Recent Pat Biotechnol 2019; 13:45-56. [PMID: 30370868 DOI: 10.2174/1872208312666181029093333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Background and Sources: Lipase enzyme is a naturally occurring enzyme found in the stomach and pancreatic juice. Its function is to digest fats and lipids, helping to maintain correct gallbladder function. Lipase is the one such widely used and versatile enzyme. These enzymes are obtained from animals, plants and as well as from several microorganisms and are sufficiently stable. These are considered as nature's catalysts, but commercially, only microbial lipases are being used significantly. Applications: They found enormous application in the industries of fat and oil processing, oleochemical industry, food industry, detergents, pulp and paper industry, detergents, environment management, tea processing, biosensors and cosmetics and perfumery. Various recent patents related to lipases have been revised in this review. Conclusion: Lipases are very peculiar as they have the ability to hydrolyse fats into fatty acids and glycerols at the water-lipid interface and can reverse the reaction in non-aqueous media. This natural ability makes it the most widely used enzyme in various industrial applications. This article deals with the immense versatility of lipase enzymes along with the recent advancements done in the various fields related to their purification and mass production in industries.
Collapse
Affiliation(s)
- Naveen Patel
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Dhananjai Rai
- Department of Civil Engineering, BIET Jhansi, Jhansi-284128, India
| | - Shraddha Shahane
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| | - Umesh Mishra
- Department of Civil Engineering, NIT Agartala, Agartala-799046, India
| |
Collapse
|
21
|
Farías-Álvarez L, Gschaedler-Mathis A, Sánchez-Ortiz A, Femat R, Cervantes-Martínez J, Arellano-Plaza M, Zamora-Pedraza C, Amillastre E, Ghommidh C, Herrera-López E. Xanthophyllomyces dendrorhous physiological stages determination using combined measurements from dielectric and Raman spectroscopies, a cell counter system and fluorescence flow cytometry. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
22
|
Abstract
A biosensor is a device composed by a biological recognition element and a transducer that delivers selective information about a specific analyte. Technological and scientific advances in the area of biology, bioengineering, catalysts, electrochemistry, nanomaterials, microelectronics, and microfluidics have improved the design and performance of better biosensors. Enzymatic biosensors based on lipases, esterases, and phospholipases are valuable analytical apparatus which have been applied in food industry, oleochemical industry, biodegradable polymers, environmental science, and overall the medical area as diagnostic tools to detect cholesterol and triglyceride levels in blood samples. This chapter reviews recent developments and applications of lipase-, esterase-, and phospholipase-based biosensors.
Collapse
Affiliation(s)
- Georgina Sandoval
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Guadalajara, Jalisco, Mexico
| | - Enrique J Herrera-López
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C. (CIATEJ), Zapopan, Jalisco, Mexico.
| |
Collapse
|
23
|
Javed S, Azeem F, Hussain S, Rasul I, Siddique MH, Riaz M, Afzal M, Kouser A, Nadeem H. Bacterial lipases: A review on purification and characterization. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 132:23-34. [DOI: 10.1016/j.pbiomolbio.2017.07.014] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 11/16/2022]
|
24
|
Scale-up and inhibitory studies on productivity of lipase from Acinetobacter radioresistens PR8. J Biosci Bioeng 2017; 124:150-155. [DOI: 10.1016/j.jbiosc.2017.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/09/2017] [Indexed: 11/21/2022]
|