1
|
Li Q, Zhang M, Wang C, Pan K, Liu H, Zhu W, Huang Y, Zhu Q, Hu J, Jiang M, Wang F, Hong Q. Identification of xenobiotic response element family transcription regulator SadR from sulfonamides-degrading strain Microbacterium sp. HA-8 and construction of biosensor to detect sulfonamides. BIORESOURCE TECHNOLOGY 2025; 415:131705. [PMID: 39490600 DOI: 10.1016/j.biortech.2024.131705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Deciphering the regulatory mechanisms of sulfonamides (SAs) metabolism will contribute to a deeper understanding of SAs degradation in the environment. In this study, a SAs-degrading strain Microbacterium sp. HA-8 harboring a highly conserved SAs-degrading genes sadABC was isolated. SadR was a newly discovered regulator, belonging to xenobiotic response element (XRE) family, which negatively regulated the transcription of sadAB genes. Specifically, SadR bound to the sadA promoter region to repress the expression of sadAB genes. While, SAs prevented SadR from binding to sadA promoter to induce the expression of sadAB genes. Then, a whole-cell biosensor, Escherichia coli DH5α/pSRmCherry was constructed to detect SAs. The dose-dependent fluorescence of the biosensor exhibited a good fit to Hill equation. In summary, this study revealed the regulatory mechanism of SAs degradation in strain HA-8 and developed an innovative biosensor technique for detecting SAs, holding promise for future applications in environmental monitoring.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Changchang Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Weihao Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanni Huang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingli Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, China; University of Chinese Academy of Sciences, Beijing 100049, China; Technical University of Munich, Department of Chemistry, 85748 Munich, Germany.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
2
|
Mir TUG, Wani AK, Akhtar N, Katoch V, Shukla S, Kadam US, Hong JC. Advancing biological investigations using portable sensors for detection of sensitive samples. Heliyon 2023; 9:e22679. [PMID: 38089995 PMCID: PMC10711145 DOI: 10.1016/j.heliyon.2023.e22679] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/16/2023] [Indexed: 01/14/2024] Open
Abstract
Portable biosensors are emerged as powerful diagnostic tools for analyzing intricately complex biological samples. These biosensors offer sensitive detection capabilities by utilizing biomolecules such as proteins, nucleic acids, microbes or microbial products, antibodies, and enzymes. Their speed, accuracy, stability, specificity, and low cost make them indispensable in forensic investigations and criminal cases. Notably, portable biosensors have been developed to rapidly detect toxins, poisons, body fluids, and explosives; they have proven invaluable in forensic examinations of suspected samples, generating efficient results that enable effective and fair trials. One of the key advantages of portable biosensors is their ability to provide sensitive and non-destructive detection of forensic samples without requiring extensive sample preparation, thereby reducing the possibility of false results. This comprehensive review provides an overview of the current advancements in portable biosensors for the detection of sensitive materials, highlighting their significance in advancing investigations and enhancing sensitive sample detection capabilities.
Collapse
Affiliation(s)
- Tahir ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- State Forensic Science Laboratory, Srinagar, Jammu and Kashmir, 190001, India
| | - Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Vaidehi Katoch
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Ulhas Sopanrao Kadam
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
| | - Jong Chan Hong
- Division of Life Science and Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
3
|
Yuan Y, Jia H, Xu D, Wang J. Novel method in emerging environmental contaminants detection: Fiber optic sensors based on microfluidic chips. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159563. [PMID: 36265627 DOI: 10.1016/j.scitotenv.2022.159563] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Recently, human industrial practices and certain activities have caused the widespread spread of emerging contaminants throughout the environmental matrix, even in trace amounts, which constitute a serious threat to human health and environmental ecology, and have therefore attracted the attention of research scholars. Different traditional techniques are used to monitor water pollutants, However, they still have some disadvantages such as high costs, ecological problems and treatment times, and require technicians and researchers to operate them effectively. There is therefore an urgent need to develop simple, inexpensive and highly sensitive methods to sense and detect these toxic environmental contaminants. Optical fiber microfluidic coupled sensors offer different advantages over other detection technologies, allowing manipulation of light through controlled microfluidics, precise detection results and good stability, and have therefore become a logical device for screening and identifying environmental contaminants. This paper reviews the application of fiber optic microfluidic sensors in emerging environmental contaminant detection, focusing on the characteristics of different emerging contaminant types, different types of fiber optic microfluidic sensors, methodological principles of detection, and specific emerging contaminant detection applications. The optical detection methods in fiber optic microfluidic chips and their respective advantages and disadvantages are analyzed in the discussion. The applications of fiber optic biochemical sensors in microfluidic chips, especially for the detection of emerging contaminants in the aqueous environment, such as personal care products, endocrine disruptors, and perfluorinated compounds, are reviewed. Finally, the prospects of fiber optic microfluidic coupled sensors in environmental detection and related fields are foreseen.
Collapse
Affiliation(s)
- Yang Yuan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - DanYu Xu
- Tianjin Academy of Eco-enviromental Sciences, Tianjin 300191, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
4
|
Recent development of microfluidic biosensors for the analysis of antibiotic residues. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
|
6
|
|
7
|
Signal-on electrochemical aptasensor for sensitive detection of sulfamethazine based on carbon quantum dots/tungsten disulfide nanocomposites. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Garzón V, Bustos RH, G. Pinacho D. Personalized Medicine for Antibiotics: The Role of Nanobiosensors in Therapeutic Drug Monitoring. J Pers Med 2020; 10:E147. [PMID: 32993004 PMCID: PMC7712907 DOI: 10.3390/jpm10040147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Due to the high bacterial resistance to antibiotics (AB), it has become necessary to adjust the dose aimed at personalized medicine by means of therapeutic drug monitoring (TDM). TDM is a fundamental tool for measuring the concentration of drugs that have a limited or highly toxic dose in different body fluids, such as blood, plasma, serum, and urine, among others. Using different techniques that allow for the pharmacokinetic (PK) and pharmacodynamic (PD) analysis of the drug, TDM can reduce the risks inherent in treatment. Among these techniques, nanotechnology focused on biosensors, which are relevant due to their versatility, sensitivity, specificity, and low cost. They provide results in real time, using an element for biological recognition coupled to a signal transducer. This review describes recent advances in the quantification of AB using biosensors with a focus on TDM as a fundamental aspect of personalized medicine.
Collapse
Affiliation(s)
- Vivian Garzón
- PhD Biosciences Program, Universidad de La Sabana, Chía 140013, Colombia;
| | - Rosa-Helena Bustos
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| | - Daniel G. Pinacho
- Therapeutical Evidence Group, Clinical Pharmacology, Universidad de La Sabana, Chía 140013, Colombia;
| |
Collapse
|
9
|
Li J, Yu C, Wu YN, Zhu Y, Xu J, Wang Y, Wang H, Guo M, Li F. Novel sensing platform based on gold nanoparticle-aptamer and Fe-metal-organic framework for multiple antibiotic detection and signal amplification. ENVIRONMENT INTERNATIONAL 2019; 125:135-141. [PMID: 30716573 DOI: 10.1016/j.envint.2019.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
The development of a feasible antibiotic detection method is important in water quality analysis. In this study, we developed a metal-organic framework (MOF)-aptamer-3,3',5,5'-tetramethylbenzidine (TMB)-H2O2-based sensing platform composed of the reaction variable of TMB catalytic oxidation as the label (from colorless to blue) and aptamer as the target recognition element for antibiotic detection. The platform works by calculating the relation between the antibiotic concentration and the resultant decrease in MOF's catalytic activity. Basing from the comparison of typical iron-based MOF materials (Fe-MIL-53, Fe-MIL-88A, and Fe-MIL-100), we selected Fe-MIL-53 to obtain an improved signal amplification effect. The outstanding performance of the Fe-MIL-53-based sensing platform can be attributed to its topological flexibility and small electron transfer impedance. In addition, a signal increment of up to 86% was obtained with an intensified gold nanoparticle (AuNP)-supported aptamer. The inhibitory catalytic activity stemmed from the coating of antibiotic-(AuNP-aptamer) conjugates onto the outer surface of the MOF material, which increased the impedance and decreased the electron transfer efficiency. Validation results indicated that the platform showed high selectivity and sensitivity (i.e., wide linearity range of 50-200 nM, detection limit up to 8.1 ng/mL, and recovery rate of 106%-110%) for chloramphenicol detection and universal applicability for other antibiotics, including ampicillin, tetracycline, and oxytetracycline. In general, the detection reliability and easy operation of this platform render it a promising candidate for antibiotic detection in future water quality monitoring practices.
Collapse
Affiliation(s)
- Jie Li
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chaofan Yu
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yi-Nan Wu
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yingjing Zhu
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jinjin Xu
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ying Wang
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hongtao Wang
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Meiting Guo
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Fengting Li
- College of Environmental Science & Engineering, State Key Laboratory of Pollution Control and Resource Reuse Study, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
10
|
Development of novel portable and reusable fiber optical chemiluminescent biosensor and its application for sensitive detection of microcystin-LR. Biosens Bioelectron 2018; 121:27-33. [DOI: 10.1016/j.bios.2018.08.062] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/22/2018] [Accepted: 08/25/2018] [Indexed: 11/21/2022]
|
11
|
He B, Du G. Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. Anal Bioanal Chem 2018; 410:2901-2910. [PMID: 29500483 DOI: 10.1007/s00216-018-0970-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/01/2018] [Accepted: 02/17/2018] [Indexed: 12/11/2022]
Abstract
In the current study, a sensitive electrochemical sensing strategy based on aptamer (APT) for detection of sulfadimidine (SM2) was developed. A bare gold electrode (AuE) was first modified with 2-aminoethanethiol (2-AET) through self-assembly, used as linker for the subsequent immobilization of multi-walled carbon nanotubes and gold nanoparticle composites (MWCNTs/AuNPs). Then, the thiolated APT was assembled onto the electrode via sulfur-gold affinity. When SM2 existed, the APT combined with SM2 and formed a complex structure. The specific binding of SM2 and APT increased the impedance, leading to hard electron transfer between the electrode surface and the redox probe [Fe(CN)6]3-/4- and producing a significant reduction of the signal. The SM2 concentration could be reflected by the current difference of the peak currents before and after target binding. Under optimized conditions, the linear dynamic range is from 0.1 to 50 ng mL-1, with a detection limit of 0.055 ng mL-1. The sensor exhibited desirable selectivity against other sulfonamides and performs successfully when analyzing SM2 in pork samples. Graphical abstract A new electrochemical biosensor for ultrasensitive detection of sulfadimidine (SM2) by using a gold electrode modified with MWCNTs/AuNPs for signal amplification and aptamer (APT) for selectivity improvement.
Collapse
Affiliation(s)
- Baoshan He
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, Henan, 450001, China.
| | - Gengan Du
- School of Food Science and Technology, Henan University of Technology, Lianhua Road 100#, Zhengzhou, Henan, 450001, China
| |
Collapse
|
12
|
Liu J, Zhou X, Shi H. An Optical Biosensor-Based Quantification of the Microcystin Synthetase A Gene: Early Warning of Toxic Cyanobacterial Blooming. Anal Chem 2018; 90:2362-2368. [PMID: 29303555 DOI: 10.1021/acs.analchem.7b04933] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The monitoring and control of toxic cyanobacterial strains, which can produce microcystins, is critical to protect human and ecological health. We herein reported an optical-biosensor-based quantification of the microcystin synthetase A (mcyA) gene so as to discriminate microcystin-producing strains from nonproducing strains. In this assay, the mcyA-specific ssDNA probes were designed in silico with an on-line tool and then synthesized to be covalently immobilized on an optical-fiber surface. Production of fluorescently modified target DNA fragment amplicons was accomplished through the use of Cy5-tagged deoxycytidine triphosphates (dCTPs) in the polymerase chain reaction (PCR) method, which resulted in copies with internally labeled multiple sites per DNA molecule and delivered great sensitivity. With a facile surface-based hybridization process, the PCR amplicons were captured on the optical-fiber surface and were induced by an evanescent-wave field into fluorescence emission. Under the optimum conditions, the detection limit was found to be 10 pM (S/N ratio = 3) and equaled 103 gene copies/mL. The assay was triumphantly demonstrated for PCR amplicons of mcyA detection and showed satisfactory stability and reproducibility. Moreover, the sensing system exhibited excellent selectivity with quantitative spike recoveries from 87 to 102% for M. aeruginosa species in the mixed samples. There results confirmed that the method would serve as an accurate, cost-effective, and rapid technique for in-field testing of toxic Microcystis sp. in water, giving early information for water quality monitoring against microcystin-producing cyanobacteria.
Collapse
Affiliation(s)
- Jinchuan Liu
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment and ‡Center for Sensor Technology of Environment and Health, Tsinghua University , Beijing 100084, China
| |
Collapse
|
13
|
Liu L, Zhou X, Lu Y, Shan D, Xu B, He M, Shi H, Qian Y. Facile screening of potential xenoestrogens by an estrogen receptor-based reusable optical biosensor. Biosens Bioelectron 2017; 97:16-20. [PMID: 28549265 DOI: 10.1016/j.bios.2017.05.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 12/14/2022]
Abstract
The apparent increase in hormone-induced cancers and disorders of the reproductive tract has led to a growing demand for new technologies capable of screening xenoestrogens. We reported an estrogen receptor (ER)-based reusable fiber biosensor for facile screening estrogenic compounds in environment. The bioassay is based on the competition of xenoestrogens with 17β-estradiol (E2) for binding to the recombinant receptor of human estrogen receptor α (hERα) protein, leaving E2 free to bind to fluorophore-labeled anti-E2 monoclonal antibody. Unbound anti-E2 antibody then binds to the immobilized E2-protein conjugate on the fiber surface, and is detected by fluorescence emission induced by evanescent field. As expected, the stronger estrogenic activity of xenoestrogen would result in the weaker fluorescent signal. Three estrogen-agonist compounds, diethylstilbestrol (DES), 4-n-nonylphenol (NP) and 4-n-octylphenol (OP), were chosen as a paradigm for validation of this assay. The rank order of estrogenic potency determined by this biosensor was DES>OP>NP, which were consistent with the published results in numerous studies. Moreover, the E2-protein conjugate modified optical fiber was robust enough for over 300 sensing cycles with the signal recoveries ranging from 90% to 100%. In conclusion, the biosensor is reusable, reliable, portable and amenable to on-line operation, providing a facile, efficient and economical alternative to screen potential xenoestrogens in environment.
Collapse
Affiliation(s)
- Lanhua Liu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiaohong Zhou
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yun Lu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Didi Shan
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bi Xu
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Miao He
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hanchang Shi
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Qian
- State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|