1
|
Park J, Jung M, Elashery SEA, Oh H, Attia NF. Molecular Imprinting as a Tool for Exceptionally Selective Gas Separation in Nanoporous Polymers. Chem Asian J 2025; 20:e202401205. [PMID: 39552274 DOI: 10.1002/asia.202401205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The alarming rise in atmospheric CO2 levels, primarily driven by fossil fuel combustion and industrial processes, has become a major contributor to global climate change. Effective CO2 capture technologies are urgently needed, particularly for the selective removal of CO2 from industrial gas streams, such as flue gas and biogas, which often contain impurities like N2 and CH4. In this study, we report the design and synthesis of novel molecularly imprinted polymers (MIPs) using 4-vinylpyridine (4VP) and methacrylic acid (MAA) as functional monomers, and thiophene (Th) and formaldehyde (HC) as molecular templates. The MIPs were specifically engineered to create selective molecular cavities within a nanoporous polymer matrix for the efficient capture of CO2. By adjusting the molar ratios of the template to functional monomers, we optimized the molecular imprinting process to enhance CO2 selectivity over N2 and CH4. The resulting MIPs exhibited outstanding performance, with a maximum CO2/N2 selectivity of 153 at 25 bar and CO2/CH4 selectivity of 25.3 at 1 bar, significantly surpassing previously reported porous polymers and metal-organic frameworks (MOFs) under similar conditions. Furthermore, we conducted heat of adsorption studies, which revealed the strong and selective interaction of CO2 with the imprinted cavities, confirming the superior adsorption properties of the synthesized MIPs. The study demonstrates that molecular imprinting can effectively enhance both CO2 capture capacity and selectivity, providing a cost-efficient and scalable solution for industrial CO2 separation and purification processes.
Collapse
Affiliation(s)
- Jaewoo Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44191, Ulsan, Republic of Korea
| | - Minji Jung
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44191, Ulsan, Republic of Korea
| | - Sally E A Elashery
- Department of Chemistry, Faculty of Science, Cairo University, Gamaa Str., 12613, Giza, Egypt
| | - Hyunchul Oh
- Department of Chemistry, Ulsan National Institute of Science and Technology, 44191, Ulsan, Republic of Korea
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute of Standards, 136, 12211, Giza, Egypt
| |
Collapse
|
2
|
Oluz Z, Yazlak MG, Kurşun TT, Nayab S, Glasser G, Yameen B, Duran H. Silica Nanoparticles Tailored with a Molecularly Imprinted Copolymer Layer as a Highly Selective Biorecognition Element. Macromol Rapid Commun 2024; 45:e2400471. [PMID: 39183584 DOI: 10.1002/marc.202400471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/24/2024] [Indexed: 08/27/2024]
Abstract
Molecularly imprinted silica nanoparticles (SP-MIP) are synthesized for the real-time optical detection of low-molecular-weight compounds. Azo-initiator-modified silica beads are functionalized through reversible addition-fragmentation chain transfer (RAFT) polymerization, which leads to efficient control of the grafted layer. The copolymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EDMA) on azo initiator-coated silica particles (≈100 nm) using chain transfer agent (2-phenylprop-2-yl-dithiobenzoate) is carried out in the presence of a target analyte molecule (l-Boc-phenylalanine anilide, l-BFA). The chemical and morphological properties of SP-MIP are characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller surface analysis, and thermogravimetric analysis. Finally, SP-MIP is located on the gold surface to be used as a biorecognition layer on the surface plasmon resonance spectrometer (SPR). The sensitivity, response time, and selectivity of SP-MIP are investigated by three similar analogous molecules (l-Boc-Tryptophan, l-Boc-Tyrosine, and l-Boc-Phenylalanine) and the imprinted particle surface showed excellent relative selectivity toward l-Boc-Phenylalanine (l-BFA) (k = 61), while the sensitivity is recorded as limit of detection = 1.72 × 10-4 m.
Collapse
Affiliation(s)
- Zehra Oluz
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Mustafa Göktürk Yazlak
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
| | - Tuğana Talya Kurşun
- Chemistry Department, Gazi University, Bandırma Cad. No:6/1, Ankara, 06560, Turkiye
| | - Sana Nayab
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Gunnar Glasser
- Max-Planck-Institute fuer Polymerforschung, Ackermannweg 10, 55128, Mainz, Rhineland-Palatinate, Germany
| | - Basit Yameen
- Department of Chemistry, School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Hatice Duran
- Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Söğütözü Cad. 43, Ankara, 06560, Turkiye
- UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, 06800, Turkiye
| |
Collapse
|
3
|
Kamarchuk G, Pospelov A, Kamarchuk L, Belan V, Herus A, Savytskyi A, Vakula V, Harbuz D, Gudimenko V, Faulques E. Quantum mechanisms for selective detection in complex gas mixtures using conductive sensors. Sci Rep 2023; 13:21432. [PMID: 38052839 DOI: 10.1038/s41598-023-48207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
In this paper, we consider new quantum mechanisms for selective detection in complex gaseous media which provide the highest possible efficiency of quantum sensors and for the first time analyze their nature. On the basis of these quantum mechanisms, the concepts of quantum detection and innovative methods of analysis are developed, which are virtually impossible to implement in the conventional conductive sensors and nanosensors. Examples of original solutions to problems in the field of detection and analysis of human breath using point-contact sensors are considered. A new method of analysis based on detection of metastable quantum states of the "point-contact sensor-breath" system in dynamic mode is proposed. The conductance histogram of dendritic Yanson point contacts recorded for this system is a unique energy signature of breath which allows differentiation between the states of human body. We demonstrate that nanosized Yanson point contacts, which, thanks to their quantum properties, can replace a massive spectrometer, open up wide opportunities for solving complex problems in the field of breath analysis using a new generation of portable high-tech quantum sensor devices.
Collapse
Affiliation(s)
- G Kamarchuk
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine.
| | - A Pospelov
- National Technical University "Kharkiv Polytechnic Institute", 2 Kyrpychov Str., Kharkiv, 61002, Ukraine
| | - L Kamarchuk
- SI "Institute for Children and Adolescents Health Care" of NAMS of Ukraine, 52-A Yuvileinyi Ave., Kharkiv, 61153, Ukraine
| | - V Belan
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - A Herus
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - A Savytskyi
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - V Vakula
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - D Harbuz
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - V Gudimenko
- B. Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., Kharkiv, 61103, Ukraine
| | - E Faulques
- Institut Des Matériaux Jean Rouxel (IMN), Université de Nantes, CNRS, F-44000, Nantes, France
| |
Collapse
|
4
|
Zhang M, Zhang Y, Li Y, Wei J, Xu L, Yuan J, Xu Z, Duan Y, Han T. A vapofluorochromic dimethylaniline naphthol Schiff base used for fabricating smart textiles for VOCs detection. DYES AND PIGMENTS 2023; 220:111704. [DOI: 10.1016/j.dyepig.2023.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Min Y, Wang L, Yuan C, Liu H, Gong X, Cao M, Xu JT, Liu J. Removal of Formaldehyde and Its Analogues Using a Hybrid Assembly of Pyrene-Modified Hydrazide and rGO: A Negative Carbon Emission and Green Chemical Decomposition Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37467158 DOI: 10.1021/acs.langmuir.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Indoor gaseous formaldehyde is the main environmental pollutant that can cause fatal threats to human health. A number of physical and chemical methods have been developed to tackle this issue. However, the existing methods are still unsatisfactory to meet the requirement of sustainable development owing to the flaws of low efficiency and reversible or second pollution. Herein, a chemical method based on a nucleophilic reaction between hydrazine and aldehyde that generates the only by-product of H2O is designed for the removal of formaldehyde. 1-Pyrenebutyric hydrazide was synthesized by a simple esterification reaction and then self-assembled on reduced graphene oxide (rGO) with a large surface area by forming π-π stacking to obtain a composite for chemical removal of gaseous formaldehyde under ambient conditions. In a practical test, the formaldehyde removal rate could reach 91% of the theoretical value, which meets the requirement for commercial formaldehyde removal applications. After 10 times recycling, the formaldehyde removal rate still remains as high as 85%. Moreover, the composite could be regenerated in weak acidic media, which greatly reduce the manufacturing cost in practical applications.
Collapse
Affiliation(s)
- Yuru Min
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Lei Wang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Chenyao Yuan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Honglei Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Xiaole Gong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Mengyu Cao
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jiang-Tao Xu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, China
| |
Collapse
|
6
|
Lee S, Kim M, Ahn BJ, Jang Y. Odorant-responsive biological receptors and electronic noses for volatile organic compounds with aldehyde for human health and diseases: A perspective review. JOURNAL OF HAZARDOUS MATERIALS 2023; 455:131555. [PMID: 37156042 DOI: 10.1016/j.jhazmat.2023.131555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Volatile organic compounds (VOCs) are gaseous chemicals found in ambient air and exhaled breath. In particular, highly reactive aldehydes are frequently found in polluted air and have been linked to various diseases. Thus, extensive studies have been carried out to elucidate disease-specific aldehydes released from the body to develop potential biomarkers for diagnostic purposes. Mammals possess innate sensory systems, such as receptors and ion channels, to detect these VOCs and maintain physiological homeostasis. Recently, electronic biosensors such as the electronic nose have been developed for disease diagnosis. This review aims to present an overview of natural sensory receptors that can detect reactive aldehydes, as well as electronic noses that have the potential to diagnose certain diseases. In this regard, this review focuses on eight aldehydes that are well-defined as biomarkers in human health and disease. It offers insights into the biological aspects and technological advances in detecting aldehyde-containing VOCs. Therefore, this review will aid in understanding the role of aldehyde-containing VOCs in human health and disease and the technological advances for improved diagnosis.
Collapse
Affiliation(s)
- Solpa Lee
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Yongwoo Jang
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea; Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
7
|
Pathak AK, Swargiary K, Kongsawang N, Jitpratak P, Ajchareeyasoontorn N, Udomkittivorakul J, Viphavakit C. Recent Advances in Sensing Materials Targeting Clinical Volatile Organic Compound (VOC) Biomarkers: A Review. BIOSENSORS 2023; 13:114. [PMID: 36671949 PMCID: PMC9855562 DOI: 10.3390/bios13010114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In general, volatile organic compounds (VOCs) have a high vapor pressure at room temperature (RT). It has been reported that all humans generate unique VOC profiles in their exhaled breath which can be utilized as biomarkers to diagnose disease conditions. The VOCs available in exhaled human breath are the products of metabolic activity in the body and, therefore, any changes in its control level can be utilized to diagnose specific diseases. More than 1000 VOCs have been identified in exhaled human breath along with the respiratory droplets which provide rich information on overall health conditions. This provides great potential as a biomarker for a disease that can be sampled non-invasively from exhaled breath with breath biopsy. However, it is still a great challenge to develop a quick responsive, highly selective, and sensitive VOC-sensing system. The VOC sensors are usually coated with various sensing materials to achieve target-specific detection and real-time monitoring of the VOC molecules in the exhaled breath. These VOC-sensing materials have been the subject of huge interest and extensive research has been done in developing various sensing tools based on electrochemical, chemoresistive, and optical methods. The target-sensitive material with excellent sensing performance and capturing of the VOC molecules can be achieved by optimizing the materials, methods, and its thickness. This review paper extensively provides a detailed literature survey on various non-biological VOC-sensing materials including metal oxides, polymers, composites, and other novel materials. Furthermore, this review provides the associated limitations of each material and a summary table comparing the performance of various sensing materials to give a better insight to the readers.
Collapse
Affiliation(s)
- Akhilesh Kumar Pathak
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kankan Swargiary
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuntaporn Kongsawang
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pannathorn Jitpratak
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Noppasin Ajchareeyasoontorn
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jade Udomkittivorakul
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Charusluk Viphavakit
- International School of Engineering (ISE), Intelligent Control Automation of Process Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
A review on rapid detection of modified quartz crystal microbalance sensors for food: Contamination, flavour and adulteration. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hua Y, Ahmadi Y, Kim KH. Molecularly imprinted polymers for sensing gaseous volatile organic compounds: opportunities and challenges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119931. [PMID: 35977643 DOI: 10.1016/j.envpol.2022.119931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Chemical sensors that can detect volatile organic compounds (VOCs) are the subject of extensive research efforts. Among various sensing technologies, molecularly imprinted polymers (MIPs) are regarded as a highly promising option for their detection with many advantageous properties, e.g., specific binding-site for template molecules, high recognition specificity, ease of preparation, and chemical stability. This review covers recent advances in the sensing application of MIPs toward various types of VOCs (e.g., aliphatic and aromatic compounds). Particular emphasis has been placed on multiple approaches to the synthesis of MIP-based VOC sensors in association with their performance and sensing mechanisms. Current challenges and opportunities for new VOC-sensing applications are also discussed based on MIP technology.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, South Korea.
| |
Collapse
|
10
|
|
11
|
Cowen T, Cheffena M. Template Imprinting Versus Porogen Imprinting of Small Molecules: A Review of Molecularly Imprinted Polymers in Gas Sensing. Int J Mol Sci 2022; 23:ijms23179642. [PMID: 36077047 PMCID: PMC9455763 DOI: 10.3390/ijms23179642] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The selective sensing of gaseous target molecules is a challenge to analytical chemistry. Selectivity may be achieved in liquids by several different methods, but many of these are not suitable for gas-phase analysis. In this review, we will focus on molecular imprinting and its application in selective binding of volatile organic compounds and atmospheric pollutants in the gas phase. The vast majority of indexed publications describing molecularly imprinted polymers for gas sensors and vapour monitors have been analysed and categorised. Specific attention was then given to sensitivity, selectivity, and the challenges of imprinting these small volatile compounds. A distinction was made between porogen (solvent) imprinting and template imprinting for the discussion of different synthetic techniques, and the suitability of each to different applications. We conclude that porogen imprinting, synthesis in an excess of template, has great potential in gas capture technology and possibly in tandem with more typical template imprinting, but that the latter generally remains preferable for selective and sensitive detection of gaseous molecules. More generally, it is concluded that gas-phase applications of MIPs are an established science, capable of great selectivity and parts-per-trillion sensitivity. Improvements in the fields are likely to emerge by deviating from standards developed for MIP in liquids, but original methodologies generating exceptional results are already present in the literature.
Collapse
|
12
|
Abstract
This paper provides an overview of recent developments in the field of volatile organic compound (VOC) sensors, which are finding uses in healthcare, safety, environmental monitoring, food and agriculture, oil industry, and other fields. It starts by briefly explaining the basics of VOC sensing and reviewing the currently available and quickly progressing VOC sensing approaches. It then discusses the main trends in materials' design with special attention to nanostructuring and nanohybridization. Emerging sensing materials and strategies are highlighted and their involvement in the different types of sensing technologies is discussed, including optical, electrical, and gravimetric sensors. The review also provides detailed discussions about the main limitations of the field and offers potential solutions. The status of the field and suggestions of promising directions for future development are summarized.
Collapse
Affiliation(s)
- Muhammad Khatib
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
13
|
Liu J, Zhao W, Liu J, Cai X, Liang D, Tang S, Xu B. Preparation of a quartz microbalance sensor based on molecularly imprinted polymers and its application in formaldehyde detection. RSC Adv 2022; 12:13235-13241. [PMID: 35520113 PMCID: PMC9063693 DOI: 10.1039/d2ra01705a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/27/2022] [Indexed: 11/21/2022] Open
Abstract
Quartz crystal microbalances (QCMs) have been widely used in the food industry, environmental monitoring, and biomedicine. Here, a molecularly imprinted QCM sensor was prepared and used for formaldehyde detection. Using polyvinyl chloride as the embedding material and tetrahydrofuran as the solvent, a QCM electrode was modified with HCHO molecularly imprinted polymers (HCHO-MIPs). The detection conditions of the sensor were optimized, and its selectivity was investigated. The theoretical calculation results revealed that the acrylamide and pentaerythritol triacrylate were potential candidate functional monomer and cross-linking agent, respectively, in the preparation of HCHO-MIPs with high adsorbability, superselectivity, and stability. According to the calculated results, a sensor had been prepared. When the pH was 7, the added mass of the HCHO-MIPs (or NIPs) was 20 mg, and the amount of PVC coating was 20 μL, the sensor exhibited good adsorption, selectivity, repeatability, high sensitivity, high accuracy, and a short response time. The lowest detection limit was 10.72 ng mL-1. The sensor exhibited higher selectivity for HCHO than for propionaldehyde and benzaldehyde. The HCHO contents in fresh shrimp samples were detected using the sensor for four cycles, and the detection rates were in the range of 97.56-98.60%. This study provided a theoretical and experimental basis for the rapid detection of HCHO.
Collapse
Affiliation(s)
- Junbo Liu
- College of Resources and Environment, Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Wensi Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences Beijing China
| | - Jin Liu
- College of Resources and Environment, Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Xuhong Cai
- College of Resources and Environment, Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Dadong Liang
- College of Resources and Environment, Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Shanshan Tang
- College of Resources and Environment, Key Laboratory of Straw Biology and Utilization, Ministry of Education, Jilin Agricultural University Changchun 130118 China
| | - Bao Xu
- Institute of Mathematica, Jilin Normal University Siping Jilin 136000 China
| |
Collapse
|
14
|
Materials Design, Sensing Performance and Mechanism of Anhydrous Hydrogen Fluoride Gas Sensor Based on Amino-Functionalized MIL-101(Cr) for New Energy Vehicles. COATINGS 2022. [DOI: 10.3390/coatings12020260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To guarantee the security of new energy vehicles (NEV), which include energy storage devices such as batteries, a quartz crystal microbalance (QCM) sensor was designed to detect online the HF gas produced from the leakage of electrolyte in the power system. Based on the chemical properties of HF gas, an amino-functionalized metal–organic framework NH2-MIL-101 (Cr) was synthesized as a sensing material of a QCM transducer to detect HF gas for NEV safeguard. The sensing materials are designed based on the hydrogen bond interaction between the amino group and HF molecular and were characterized by powder X-ray diffraction, Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA), etc. The performance of this sensor showed high sensitivity, with a limit of detection at 500 ppb, short response/recovery time and good reproducibility for anhydrous hydrogen fluoride (AHF) detection. Additionally, the sensing mechanism of NH2-MIL-101(Cr) QCM resonator to AHF is revealed to be reversible chemical adsorption by Gaussian 09. It is well-matched with a result of experimental determination through temperature-varying microgravimetric experiments. Therefore, the amino-functionalized MIL-101(Cr) QCM resonator may be a good candidate for an NEV safety monitor due to its rapid response to HF leaked from the decomposition of the electrolyte.
Collapse
|
15
|
Pan S, Roy S, Choudhury N, Behera PP, Sivaprakasam K, Ramakrishnan L, De P. From small molecules to polymeric probes: recent advancements of formaldehyde sensors. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:49-63. [PMID: 35185388 PMCID: PMC8856084 DOI: 10.1080/14686996.2021.2018920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/10/2021] [Indexed: 05/12/2023]
Abstract
Formaldehyde is a well-known industrial material regularly used in fishery, vegetable markets, and fruit shops for maintaining their freshness. But due to its carcinogenic nature and other toxic effects, it is very important to detect it in very low concentrations. In recent years, amine-containing fluorescent probes have gained significant attention for designing formaldehyde sensors. However, the major drawbacks of these small molecular probes are low sensitivity and long exposure time, which limits their real-life applications. In this regard, polymeric probes have gained significant attention to overcome the aforementioned problems. Several polymeric probes have been utilized as a coating material, nanoparticle, quartz crystal microbalance (QCM), etc., for the selective and sensitive detection of formaldehyde. The main objective of this review article is to comprehensively describe the recent advancements in formaldehyde sensors based on small molecules and polymers, and their successful applications in various fields, especially in situ formaldehyde sensing in biological systems.
Collapse
Affiliation(s)
- Swagata Pan
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Subhadip Roy
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Neha Choudhury
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Priyanka Priyadarshini Behera
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Kannan Sivaprakasam
- Department of Chemistry and Biochemistry, St. Cloud State University, Saint Cloud, MN, USA
| | - Latha Ramakrishnan
- College of Science and Technology, Bloomsburg University, Bloomsburg, PA, USA
| | - Priyadarsi De
- Polymer Research Centre, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| |
Collapse
|
16
|
Method for QCM Resonator Device Equivalent Circuit Parameter Extraction and Electrode Quality Assessment. MICROMACHINES 2021; 12:mi12091086. [PMID: 34577729 PMCID: PMC8472393 DOI: 10.3390/mi12091086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Quartz crystal microbalance (QCM) resonators are used in a wide range of sensors. Current QCM resonators achieve a simultaneous measurement of multiple physical quantities by analyzing lumped-element equivalent parameters, which are obtained via the introduction of external devices. This introduction of external devices will probably increase measurement error. To realize the measurement of multiple physical quantities while eliminating the measurement error caused by external devices, this paper proposes a measurement method for the lumped-element equivalent parameters of QCM resonators without the need for extra external devices. Accordingly, a numerical method for solving nonlinear equations with fewer data points required and a higher accuracy was adopted. A standard crystal resonator parameter extraction experiment is described. The extracted parameters were consistent with the nominal parameters, which confirms the accuracy of this method. Furthermore, six QCM resonator device samples with different electrode diameters and materials were produced and used in the parameter measurement experiment. The linear relationship between the electrode material conductivity and motional resistance R1 is discussed. The ability of this method to characterize the electrode material and to detect the rust status of the electrode is also demonstrated. These abilities support the potential utility of the proposed method for an electrode quality assessment of piezoelectric devices.
Collapse
|
17
|
Coating-Based Quartz Crystal Microbalance Detection Methods of Environmentally Relevant Volatile Organic Compounds. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Volatile organic compounds (VOCs) that evaporate under standard atmospheric conditions are of growing concern. This is because it is well established that VOCs represent major contamination risks since release of these compounds into the atmosphere can contribute to global warming, and thus, can also be detrimental to the overall health of worldwide populations including plants, animals, and humans. Consequently, the detection, discrimination, and quantification of VOCs have become highly relevant areas of research over the past few decades. One method that has been and continues to be creatively developed for analyses of VOCs is the Quartz Crystal Microbalance (QCM). In this review, we summarize and analyze applications of QCM devices for the development of sensor arrays aimed at the detection of environmentally relevant VOCs. Herein, we also summarize applications of a variety of coatings, e.g., polymers, macrocycles, and ionic liquids that have been used and reported in the literature for surface modification in order to enhance sensing and selective detection of VOCs using quartz crystal resonators (QCRs) and thus QCM. In this review, we also summarize novel electronic systems that have been developed for improved QCM measurements.
Collapse
|
18
|
Feng L, Feng L, Li Q, Cui J, Guo J. Sensitive Formaldehyde Detection with QCM Sensor Based on PAAm/MWCNTs and PVAm/MWCNTs. ACS OMEGA 2021; 6:14004-14014. [PMID: 34124425 PMCID: PMC8190811 DOI: 10.1021/acsomega.0c05987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/12/2021] [Indexed: 05/30/2023]
Abstract
Two formaldehyde detection methods are proposed by applying composite film quartz crystal microbalance (QCM) sensors. QCM sensor coated with PAAm/MWCNTs and PVAm/MWCNTs shows excellent characteristics of lower limit and high sensitivity. The lower limit of PVAm/MWCNTs is 0.5 ppm, and its detection sensitivity is 0.74 ppm/Hz. Upon working at different concentrations of formaldehyde and fabricating in different proportions, the reuse performance, gas selectivity, and response at room temperature show contrasting results. The main advantages of the two sensors presented are fast reaction, low cost, and easy manufacture. Compared to other formaldehyde sensors based on QCM, the PAAm/MWCNT- and PVAm/MWCNT-coated QCM sensors are able to concurrently show excellent selectivity, reuse performance, and high sensitivity, which is of great significance to detect the environmental quality.
Collapse
Affiliation(s)
- Lihui Feng
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Liying Feng
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Qi Li
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
- Shenzhen
Mindray Bio-Medical Electronics Co., Ltd., 518057 Shenzhen, China
| | - Jianmin Cui
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| | - Junqiang Guo
- School
of Optics and Photonics, Beijing Institute
of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Abstract
The field of molecularly imprinted polymer (MIP)-based chemosensors has been experiencing constant growth for several decades. Since the beginning, their continuous development has been driven by the need for simple devices with optimum selectivity for the detection of various compounds in fields such as medical diagnosis, environmental and industrial monitoring, food and toxicological analysis, and, more recently, the detection of traces of explosives or their precursors. This review presents an overview of the main research efforts made so far for the development of MIP-based chemosensors, critically discusses the pros and cons, and gives perspectives for further developments in this field.
Collapse
|
20
|
Zhang J, Wang Y, Lu X. Molecular imprinting technology for sensing foodborne pathogenic bacteria. Anal Bioanal Chem 2021; 413:4581-4598. [PMID: 33564924 DOI: 10.1007/s00216-020-03138-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023]
Abstract
Foodborne diseases caused by bacterial pathogens pose a widespread and growing threat to public health in the world. Rapid detection of pathogenic bacteria is of great importance to prevent foodborne diseases and ensure food safety. However, traditional detection methods are time-consuming, labour intensive and expensive. In recent years, many attempts have been made to develop alternative methods for bacterial detection. Biosensors integrated with molecular imprinted polymers (MIPs) and various transducer platforms are among the most promising candidates for the detection of pathogenic bacteria in a highly sensitive, selective and ultra-rapid manner. In this review, we summarize the most recent advances in molecular imprinting for bacterial detection, introduce the underlying recognition mechanisms and highlight the applications of MIP-based biosensors. In addition, the challenges and future perspectives are discussed with the aim of accelerating the development of MIP-based biosensors and extending their applications.
Collapse
Affiliation(s)
- Jingbin Zhang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Yixiang Wang
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Xiaonan Lu
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada.
| |
Collapse
|
21
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
22
|
Point-of-Care Diagnostics: Molecularly Imprinted Polymers and Nanomaterials for Enhanced Biosensor Selectivity and Transduction. EUROBIOTECH JOURNAL 2020. [DOI: 10.2478/ebtj-2020-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Abstract
Significant healthcare disparities resulting from personal wealth, circumstances of birth, education level, and more are internationally prevalent. As such, advances in biomedical science overwhelmingly benefit a minority of the global population. Point-of-Care Testing (POCT) can contribute to societal equilibrium by making medical diagnostics affordable, convenient, and fast. Unfortunately, conventional POCT appears stagnant in terms of achieving significant advances. This is attributed to the high cost and instability associated with conventional biorecognition: primarily antibodies, but nucleic acids, cells, enzymes, and aptamers have also been used. Instead, state-of-the-art biosensor researchers are increasingly leveraging molecularly imprinted polymers (MIPs) for their high selectivity, excellent stability, and amenability to a variety of physical and chemical manipulations. Besides the elimination of conventional bioreceptors, the incorporation of nanomaterials has further improved the sensitivity of biosensors. Herein, modern nanobiosensors employing MIPs for selectivity and nanomaterials for improved transduction are systematically reviewed. First, a brief synopsis of fabrication and wide-spread challenges with selectivity demonstration are presented. Afterward, the discussion turns to an analysis of relevant case studies published in the last five years. The analysis is given through two lenses: MIP-based biosensors employing specific nanomaterials and those adopting particular transduction strategies. Finally, conclusions are presented along with a look to the future through recommendations for advancing the field. It is hoped that this work will accelerate successful efforts in the field, orient new researchers, and contribute to equitable health care for all.
Collapse
|
23
|
Ganie AS, Bano S, Sultana S, Sabir S, Khan MZ. Ferrite Nanocomposite Based Electrochemical Sensor: Characterization, Voltammetric and Amperometric Studies for Electrocatalytic Detection of Formaldehyde in Aqueous Media. ELECTROANAL 2020. [DOI: 10.1002/elan.202060179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Adil Shafi Ganie
- Environmental Research Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Sayfa Bano
- Environmental Research Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Saima Sultana
- Environmental Research Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Suhail Sabir
- Environmental Research Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Mohammad Zain Khan
- Environmental Research Laboratory Department of Chemistry Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
24
|
Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. SENSORS 2020; 20:s20164433. [PMID: 32784423 PMCID: PMC7472373 DOI: 10.3390/s20164433] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Detection and monitoring of volatiles is a challenging and fascinating issue in environmental analysis, agriculture and food quality, process control in industry, as well as in 'point of care' diagnostics. Gas chromatographic approaches remain the reference method for the analysis of volatile organic compounds (VOCs); however, gas sensors (GSs), with their advantages of low cost and no or very little sample preparation, have become a reality. Gas sensors can be used singularly or in array format (e.g., e-noses); coupling data output with multivariate statical treatment allows un-target analysis of samples headspace. Within this frame, the use of new binding elements as recognition/interaction elements in gas sensing is a challenging hot-topic that allowed unexpected advancement. In this review, the latest development of gas sensors and gas sensor arrays, realized using peptides, molecularly imprinted polymers and DNA is reported. This work is focused on the description of the strategies used for the GSs development, the sensing elements function, the sensors array set-up, and the application in real cases.
Collapse
|
25
|
Abstract
Volatile organic compounds (VOCs) are pervasive in the environment. Since the early 1980s, substantial work has examined the detection of these materials, as they can indicate environmental changes that can affect human health. VOCs and similar compounds present a very specific sensing problem in that they are not reactive and often nonpolar, so it is difficult to find materials that selectively bind or adsorb them. A number of techniques are applied to vapor sensing. High resolution molecular separation approaches such as gas chromatography and mass spectrometry are well-characterized and offer high sensitivity, but are difficult to implement in portable, real-time monitors, whereas approaches such as chemiresistors are promising, but still in development. Gravimetric approaches, in which the mass of an adsorbed vapor is directly measured, have several potential advantages over other techniques but have so far lagged behind other approaches in performance and market penetration. This review aims to offer a comprehensive background on gravimetric sensing including underlying resonators and sensitizers, as well as a picture of applications and commercialization in the field.
Collapse
Affiliation(s)
- Christine K. McGinn
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Zachary A. Lamport
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| | - Ioannis Kymissis
- Department of Electrical Engineering, Columbia University, New York, New York 10027-6902, United States
| |
Collapse
|
26
|
Gültekin A, Ünüvar A, Karanfil G, Yilmaz I, Say R. Development of molecularly ımprınted polymer based quartz crystal mıcrobalance nanosensor for the determınatıon of tryptophan. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1746313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Aytaç Gültekin
- Faculty of Engineering, Department of Energy Systems Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | | - Gamze Karanfil
- Faculty of Engineering, Department of Energy Systems Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | - Ibrahim Yilmaz
- Department of Chemistry, Kamil Özdağ Science Faculty, Karamanoğlu Mehmetbey University, Karaman, Turkey
| | | |
Collapse
|
27
|
Yao CX, Zhao N, Liu JM, Fang GZ, Wang S. Ultra-Stable UiO-66 Involved Molecularly Imprinted Polymers for Specific and Sensitive Determination of Tyramine Based on Quartz Crystal Microbalance Technology. Polymers (Basel) 2020; 12:polym12020281. [PMID: 32024028 PMCID: PMC7077428 DOI: 10.3390/polym12020281] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
A rapid method was developed to determine the content of tyramine in food on the basis of the combination of molecular imprinting technique and the metal-organic frameworks. We developed the new molecular imprinted polymers based on metal-organic frameworks UiO-66 (named UiO-66@MIPs) as the sensing recognition element, the non-molecular imprinted polymers based on UiO-66 (named UiO-66@NIPs) was synthesized according the same steps without tyramine for comparison. The characterization of obtained UiO-66@MIPs was investigated through a series of characterization experiments. The results indicated that the octahedral shaped UiO-66 was encapsulated in the sol-gel polymer film, with a desirable thermal stability and possessed a specific surface area (SSA) of 994.3 m2·g−1. The imprinting factor of the UiO-66@MIPs for tyramine was 1.956 in static experiment. This indicates the synthesized UiO-66@MIPs have outstanding performance compered to UiO-66@NIPs on the static adsorption quantity and selective adsorption affinity. It’s to make use of advantages of the synthetic materials to develop a quartz crystal microbalance (QCM) sensor for the sensitive detection of tyramine. The detection limit of the system was 61.65 μg·L−1 within measurable concentration range from 80 to 500 μg·L−1. The prepared QCM sensor was verified in selectivity and application. The UiO-66@MIPs possess good behavior on selectivity, absorptivity, and chemical stability, so the UiO-66@MIPs achieve accurate and rapid trace detection of biogenic amines in food combining with the quartz crystal microbalance.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Guo-Zhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
- Correspondence: ; Tel.: +86-22-85358445
| |
Collapse
|
28
|
Temel F. One novel calix[4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature. Talanta 2020; 211:120725. [PMID: 32070583 DOI: 10.1016/j.talanta.2020.120725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022]
Abstract
This work designs the synthesis of a novel amino morpholine schiff base functionalized calix[4]arene cage (SCC), its deposition onto Quartz Crystal Microbalance (QCM) crystal surface, and usage for the selective detecting of formaldehyde (HCHO). The SCC modified QCM sensor has been characterized by contact angle measurements and microscopy images. Initial experiments revealed that the frequency response decreased significantly which means that there was a good interaction between the SCC molecules and HCHO. The proposed sensor exhibited a linear response towards HCHO in different concentrations ranging from 1.85 to 9.25 ppm, having the high sensitivity (S) and low limit of detection (LOD) being 18.324 Hz/ppm and 0.67 ppm, respectively. Furthermore, the adsorption behavior and mechanism of HCHO onto the QCM sensor were investigated for this sensing system and the adsorption data exhibited a good correlation with the Freundlich and Langmuir-Freundlich adsorption models in terms of the regression coefficient. The QCM sensor showed outstanding selective performance to HCHO among %97 RH and some a number of interfering volatile organic compounds (VOCs) such as chloroform, dichloromethane, acetone, n-hexane, methanol, xylene, and ammonia. Thus, real-time, sensitive, selective and effective recognition of HCHO by the sensor can be explained some adsorption mechanisms such as size-fit concept, three-dimensional structures of molecules and interaction between moieties of the sensible film layer and analyte molecules such as hydrogen bonding interactions.
Collapse
Affiliation(s)
- Farabi Temel
- Konya Technical University, Department of Chemical Engineering, 42130, Konya, Turkey.
| |
Collapse
|
29
|
Affiliation(s)
- Joseph J. BelBruno
- Dartmouth College, Department of Chemistry, Hanover, New Hampshire 03755, United States
| |
Collapse
|
30
|
Hussain M, Rupp F, Wendel HP, Gehring FK. Bioapplications of acoustic crystals, a review. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Sun Y, Zhong S. Molecularly imprinted polymers fabricated via Pickering emulsions stabilized solely by food-grade casein colloidal nanoparticles for selective protein recognition. Anal Bioanal Chem 2018; 410:3133-3143. [PMID: 29582119 DOI: 10.1007/s00216-018-1006-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 11/26/2022]
Abstract
Novel molecularly imprinted polymers (MIPs) based on denatured casein nanoparticle (DCP)-stabilized Pickering emulsions were developed for the first time. Casein, a phosphoprotein, is the main protein in milk. In this work, DCPs were solely used as Pickering-type interfacial emulsifiers for fabrication of MIPs for the selective recognition of proteins for the first time. DCPs were prepared by acidification and heat denaturation (at 80 °C) of casein. Their dispersions have satisfactory colloidal stability over a wide pH range. The DCPs acted as natural, food-grade, and edible interfacial emulsifiers, and adsorbed at the oil-water interface to form Pickering emulsions. After the polymerization of monomers, the template protein was removed by elution. During the elution, the interfacial DCPs were also removed, allowing more imprinted cavities to become exposed. The interfacial imprinting technology causes nearly all the imprinted sites to locate on the surface of the polymeric material. Therefore, the MIPs obtained exhibit fast rebinding and excellent specific recognition ability toward the analytes. Overall, this work provides a promising method for designing and fabricating natural-protein-based structured emulsions to prepare MIPs and thus offers new insight into protein separation and purification. Graphical Abstract Pickering emulsions stabilized by denatured casein particles.
Collapse
Affiliation(s)
- Yanhua Sun
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Shian Zhong
- School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
32
|
Overview of Piezoelectric Biosensors, Immunosensors and DNA Sensors and Their Applications. MATERIALS 2018; 11:ma11030448. [PMID: 29562700 PMCID: PMC5873027 DOI: 10.3390/ma11030448] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
Piezoelectric biosensors are a group of analytical devices working on a principle of affinity interaction recording. A piezoelectric platform or piezoelectric crystal is a sensor part working on the principle of oscillations change due to a mass bound on the piezoelectric crystal surface. In this review, biosensors having their surface modified with an antibody or antigen, with a molecularly imprinted polymer, with genetic information like single stranded DNA, and biosensors with bound receptors of organic of biochemical origin, are presented and discussed. The mentioned recognition parts are frequently combined with use of nanoparticles and applications in this way are also introduced. An overview of the current literature is given and the methods presented are commented upon.
Collapse
|
33
|
Dickert FL. Molecular Imprinting and Functional Polymers for All Transducers and Applications. SENSORS 2018; 18:s18020327. [PMID: 29364150 PMCID: PMC5855119 DOI: 10.3390/s18020327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/22/2018] [Accepted: 01/22/2018] [Indexed: 11/16/2022]
Abstract
The main challenge in developing a chemical sensor is the synthesis of recognition coatings, which are very sensitive and selective to analytes of interest. Molecular imprinting has proven to be the most innovative strategy for this purpose in functional polymer design in the last few decades. Moreover, the introduction of functional groups brings about new applications for all available transducers. Sensitivity and selectivity features of sensor coatings can be tuned by this approach. The strategy produces molecular cavities and interaction sites in sensor coatings. The synthesis of these tailored recognition materials is performed in an outstanding manner, saving time and the high costs of chemicals. Furthermore, intermolecular interactions between the analyte and chemical layers will generate sites that are complementary to the analyte. This procedure can easily be done, directly on a transducer surface, which entails engulfing the analyte by a prepolymer and crosslinking the polymeric material. These imprinted polymers form a robust recognition layer on the transducer surface, which cannot be peeled off and can withstand very harsh conditions, both in gaseous and liquid media. These recognition materials are very suitable, for small molecules and even large bioparticles.
Collapse
Affiliation(s)
- Franz L Dickert
- Department of Analytical Chemistry, University of Vienna, Währinger Str. 38, A 1090 Vienna, Austria.
| |
Collapse
|
34
|
Phan NVH, Sussitz HF, Ladenhauf E, Pum D, Lieberzeit PA. Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition. SENSORS (BASEL, SWITZERLAND) 2018; 18:E180. [PMID: 29320454 PMCID: PMC5796476 DOI: 10.3390/s18010180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/17/2022]
Abstract
Herein we report novel approaches to the molecular imprinting of proteins utilizing templates sizing around 10 nm and some 100 nm. The first step comprised synthesizing nanoparticles of molecularly imprinted polymers (MIP) towards bovine serum albumin (BSA) and characterizing them according to size and binding capacity. In a second step, they were utilized as templates. Quartz crystal microbalances (QCM) coated with MIP thin films based on BSA MIP nanoparticles lead to a two-fold increase in sensor responses, compared with the case of directly using the protein as the template. This also established that individual BSA molecules exhibit different "epitopes" for molecular imprinting on their outer surfaces. In light of this knowledge, a possible MIP-based biomimetic assay format was tested by exposing QCM coated with BSA MIP thin films to mixtures of BSA and imprinted and non-imprinted polymer (NIP) nanoparticles. At high protein concentrations (1000 ppm) measurements revealed aggregation behavior, i.e., BSA binding MIP NP onto the MIP surface. This increased sensor responses by more than 30% during proof of concept measurements. At lower a BSA concentration (500 ppm), thin films and particles revealed competitive behavior.
Collapse
Affiliation(s)
- Nam Van Ho Phan
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Hermann F Sussitz
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| | - Eva Ladenhauf
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, A-1190 Vienna, Austria.
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Waehringer Strasse 42, 1090 Vienna, Austria.
| |
Collapse
|
35
|
Yang M, He J. A copper–manganese composite oxide as QCM sensing layers for detection of formaldehyde gas. RSC Adv 2018. [DOI: 10.1039/c7ra11427c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Copper–manganese composite oxide functionalized QCM resonators were fabricated and explored for HCHO. The liner equation between the response of QCM and HCHO concentration endows the QCM resonators with a capability of HCHO quantitative analysis.
Collapse
Affiliation(s)
- Mingqing Yang
- Functional Nanomaterials Laboratory
- Center for Micro/Nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences (CAS)
| | - Junhui He
- Functional Nanomaterials Laboratory
- Center for Micro/Nanomaterials and Technology
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences (CAS)
| |
Collapse
|
36
|
Zhang Y, Zhang J, Liu Q. Gas Sensors Based on Molecular Imprinting Technology. SENSORS 2017; 17:s17071567. [PMID: 28677616 PMCID: PMC5539830 DOI: 10.3390/s17071567] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/24/2017] [Accepted: 06/29/2017] [Indexed: 11/21/2022]
Abstract
Molecular imprinting technology (MIT); often described as a method of designing a material to remember a target molecular structure (template); is a technique for the creation of molecularly imprinted polymers (MIPs) with custom-made binding sites complementary to the target molecules in shape; size and functional groups. MIT has been successfully applied to analyze; separate and detect macromolecular organic compounds. Furthermore; it has been increasingly applied in assays of biological macromolecules. Owing to its unique features of structure specificity; predictability; recognition and universal application; there has been exploration of the possible application of MIPs in the field of highly selective gas sensors. In this present study; we outline the recent advances in gas sensors based on MIT; classify and introduce the existing molecularly imprinted gas sensors; summarize their advantages and disadvantages; and analyze further research directions.
Collapse
Affiliation(s)
- Yumin Zhang
- School of Physics and Astronomy, Yunnan University, 650091 Kunming, China.
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, 650091 Kunming, China.
| | - Jin Zhang
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, 650091 Kunming, China.
| | - Qingju Liu
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, 650091 Kunming, China.
| |
Collapse
|
37
|
Tang X, Raskin JP, Lahem D, Krumpmann A, Decroly A, Debliquy M. A Formaldehyde Sensor Based on Molecularly-Imprinted Polymer on a TiO₂ Nanotube Array. SENSORS 2017; 17:s17040675. [PMID: 28338635 PMCID: PMC5419788 DOI: 10.3390/s17040675] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 01/10/2023]
Abstract
Today, significant attention has been brought to the development of sensitive, specific, cheap, and reliable sensors for real-time monitoring. Molecular imprinting technology is a versatile and promising technology for practical applications in many areas, particularly chemical sensors. Here, we present a chemical sensor for detecting formaldehyde, a toxic common indoor pollutant gas. Polypyrrole-based molecularly-imprinted polymer (PPy-based MIP) is employed as the sensing recognition layer and synthesized on a titanium dioxide nanotube array (TiO2-NTA) for increasing its surface-to-volume ratio, thereby improving the sensor performance. Our sensor selectively detects formaldehyde in the parts per million (ppm) range at room temperature. It also shows a long-term stability and small fluctuation to humidity variations. These are attributed to the thin fishnet-like structure of the PPy-based MIP on the highly-ordered and vertically-aligned TiO2-NTA.
Collapse
Affiliation(s)
- Xiaohui Tang
- ICTEAM, Université catholique de Louvain (UCL), Place du Levant, 3, 1348 Louvain-la-Neuve, Belgium.
| | - Jean-Pierre Raskin
- ICTEAM, Université catholique de Louvain (UCL), Place du Levant, 3, 1348 Louvain-la-Neuve, Belgium.
| | - Driss Lahem
- Department of Materials Science, Materia Nova ASBL, 7000 Mons, Belgium.
| | - Arnaud Krumpmann
- Materials Science Department, University of Mons, 7000 Mons, Belgium.
| | - André Decroly
- Materials Science Department, University of Mons, 7000 Mons, Belgium.
| | - Marc Debliquy
- Materials Science Department, University of Mons, 7000 Mons, Belgium.
| |
Collapse
|