1
|
Lee JE, Sridharan B, Kim D, Sung Y, Park JH, Lim HG. Continuous glucose monitoring: Minimally and non-invasive technologies. Clin Chim Acta 2025; 575:120358. [PMID: 40379197 DOI: 10.1016/j.cca.2025.120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
This paper highlights technological advancements in non-invasive blood glucose monitoring against the backdrop of increasing global prevalence of diabetes. Traditional monitoring methods, primarily invasive methods face limitations in providing continuous glucose level data, which is essential for effective and timely diagnosis of disease stage and for determining the optimal therapeutic strategy. Recent non-invasive technologies encompass optical, acoustic, electromagnetic, and chemical approaches. These technologies exploit the intrinsic properties of glucose, such as its optical absorption coefficients, to offer promising avenues for less intrusive blood glucose monitoring. Despite these advancements, challenges in achieving high accuracy persist due to interference from substances like water and other blood components. This underlines the need for sophisticated algorithms and sensor designs for accurate glucose estimation. Further research is required to integrate various sensing techniques and advanced data processing to enhance accuracy and user-friendliness. In conclusion, while significant progress has been made, developing a reliable, convenient, and accessible method for non-invasive glucose monitoring is crucial for transforming diabetes management and improving patients' quality of life.
Collapse
Affiliation(s)
- Jeong Eun Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Badrinathan Sridharan
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Daehun Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Yeongho Sung
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Hyeong Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Hae Gyun Lim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Ge Q, Han T, Liu X, Chen J, Liu W, Liu J, Xu K. Effects of Skin Blood Flow Fluctuations on Non-Invasive Glucose Measurement and a Feasible Blood Flow Control Method. SENSORS (BASEL, SWITZERLAND) 2025; 25:1162. [PMID: 40006390 PMCID: PMC11859357 DOI: 10.3390/s25041162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
In non-invasive blood glucose measurement (NBGM) based on near-infrared spectroscopy, fluctuations in blood flow represent a primary source of interference. This paper proposes a local blood flow pre-stimulation method in which the local skin is heated to dilate blood vessels and increase blood flow. This approach aims to mitigate the impact of environmental temperature variations, emotional fluctuations, and insulin secretion on blood flow, thereby enhancing the accuracy of glucose measurement. To evaluate the effectiveness of this method, a blood flow interference experiment was conducted to compare the stability of the measured spectra with and without blood flow pre-stimulation. The results demonstrated that the pre-stimulation method presents good anti-interference capabilities. Furthermore, 45 volunteers underwent oral glucose tolerance tests (OGTTs) as a part of the validation experiments. In these tests, the forearm skin blood flow of 24 volunteers was pre-stimulated using elevated temperature, while the skin of the remaining 21 subjects was maintained at a natural temperature level without stimulation. The results indicate that compared to the non-stimulated condition, the correlation between the optical signal at 1550 nm and blood glucose levels was significantly enhanced under the pre-stimulation condition. Furthermore, the root mean square error (RMSE) of the linear prediction model was reduced to just 0.92 mmol/L. In summary, this paper presents a feasible blood flow control strategy that effectively stabilizes internal blood flow, thereby improving the accuracy of NBGM.
Collapse
Affiliation(s)
- Qing Ge
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Tongshuai Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Xueying Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Jiayu Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Wenbo Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Jin Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin 300072, China; (Q.G.); (T.H.); (X.L.); (J.C.); (W.L.)
| | - Kexin Xu
- Sunrise Technology Co., Ltd., Tianjin 300192, China
| |
Collapse
|
3
|
Yang X, Chen B, He Y, Zhu C, Zhou X, Liang Y, Li B, Yin X. ppb-Level SO 2 Photoacoustic Sensor for SF 6 Decomposition Analysis Utilizing a High-Power UV Laser with a Power Normalization Method. SENSORS (BASEL, SWITZERLAND) 2024; 24:7911. [PMID: 39771649 PMCID: PMC11679058 DOI: 10.3390/s24247911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
A highly sensitive sulfur dioxide (SO2) photoacoustic gas sensor was developed for the sulfur hexafluoride (SF6) decomposition detection in electric power systems by using a novel 266 nm low-cost high-power solid-state pulse laser and a high Q-factor differential photoacoustic cell. The ultraviolet (UV) pulse laser is based on a passive Q-switching technology with a high output power of 28 mW. The photoacoustic signal was normalized to the laser power to solve the fluctuation of the photoacoustic signal due to the power instability of the UV laser. A differential photoacoustic cell can obtain a high Q-factor and reduce the gas flow noise in SF6 buffer gas. The parameters of the SO2 sensor system were optimized in terms of laser power and operating pressure. A 1σ detection limit (SNR = 1) of 2.34 ppb was achieved with a 1 s integration time, corresponding to a normalized noise equivalent absorption (NNEA) coefficient of 7.62 × 10-10 cm-1WHz-1/2.
Collapse
Affiliation(s)
- Xiu Yang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China; (X.Y.); (C.Z.); (X.Z.)
| | - Baisong Chen
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.C.); (Y.H.); (Y.L.)
| | - Yuyang He
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.C.); (Y.H.); (Y.L.)
| | - Chenchen Zhu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China; (X.Y.); (C.Z.); (X.Z.)
| | - Xing Zhou
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China; (X.Y.); (C.Z.); (X.Z.)
| | - Yize Liang
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.C.); (Y.H.); (Y.L.)
| | - Biao Li
- Chongqing Key Laboratory of Optoelectronic Information Sensing and Transmission Technology, School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
| | - Xukun Yin
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China; (X.Y.); (C.Z.); (X.Z.)
- School of Optoelectronic Engineering, Xidian University, Xi’an 710071, China; (B.C.); (Y.H.); (Y.L.)
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710071, China
| |
Collapse
|
4
|
Ghosh N, Verma S. Technological advancements in glucose monitoring and artificial pancreas systems for shaping diabetes care. Curr Med Res Opin 2024; 40:2095-2107. [PMID: 39466337 DOI: 10.1080/03007995.2024.2422005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 10/30/2024]
Abstract
The management of diabetes mellitus has undergone remarkable progress with the introduction of cutting-edge technologies in glucose monitoring and artificial pancreas systems. These innovations have revolutionized diabetes care, offering patients more precise, convenient, and personalized management solutions that significantly improve their quality of life. This review aims to provide a comprehensive overview of recent technological advancements in glucose monitoring devices and artificial pancreas systems, focusing on their transformative impact on diabetes care. A detailed review of the literature was conducted to examine the evolution of glucose monitoring technologies, from traditional invasive methods to more advanced systems. The review explores minimally invasive techniques such as continuous glucose monitoring (CGM) systems and flash glucose monitoring (FGM) systems, which have already been proven to enhance glycemic control and reduce the risk of hypoglycemia. In addition, emerging non-invasive glucose monitoring technologies, including optical, electrochemical, and electro-mechanical methods, were evaluated. These techniques are paving the way for more patient-friendly options that eliminate the need for frequent finger-prick tests, thereby improving adherence and ease of use. Advancements in closed-loop artificial pancreas systems, which integrate CGM with automated insulin delivery, were also examined. These systems, often referred to as "hybrid closed-loop" or "automated insulin delivery" systems, represent a significant leap forward in diabetes care by automating the process of insulin dosing. Such advancements aim to mimic the natural function of the pancreas, allowing for better glucose regulation without the constant need for manual interventions by the patient. Technological breakthroughs in glucose monitoring and artificial pancreas systems have had a profound impact on diabetes management, providing patients with more accurate, reliable, and individualized treatment options. These innovations hold the potential to significantly improve glycemic control, reduce the incidence of diabetes-related complications, and ultimately enhance the quality of life for individuals living with diabetes. Researchers are continually exploring novel methods to measure glucose more effectively and with greater convenience, further refining the future of diabetes care. Researchers are also investigating the integration of artificial intelligence and machine learning algorithms to further enhance the precision and predictive capabilities of glucose monitoring and insulin delivery systems. With ongoing advancements in sensor technology, connectivity, and data analytics, the future of diabetes care promises to deliver even more seamless, real-time management, empowering patients with greater autonomy and improved health outcomes.
Collapse
Affiliation(s)
- Neha Ghosh
- Centre for Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Saurabh Verma
- Centre for Industrial Pharmacy and Drugs Regulatory Affairs, Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
5
|
Kaysir MR, Zaman TM, Rassel S, Wang J, Ban D. Photoacoustic Resonators for Non-Invasive Blood Glucose Detection Through Photoacoustic Spectroscopy: A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:6963. [PMID: 39517861 PMCID: PMC11548572 DOI: 10.3390/s24216963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Diabetes mellitus is a prevalent disease with a rapidly increasing incidence projected worldwide, affecting both industrialized and developing regions. Effective diabetes management requires precise therapeutic strategies, primarily through self-monitoring of blood glucose levels to achieve tight glycemic control, thereby mitigating the risk of severe complications. In recent years, there have been significant advancements in non-invasive techniques for measuring blood glucose using photoacoustic spectroscopy (PAS), as it shows great promise for the detection of glucose using the infrared region (e.g., MIR and NIR) of light. A critical aspect of this method is the detection of the photoacoustic signal generated from blood glucose, which needs to be amplified through a photoacoustic resonator (PAR). In this work, an overview of various types of PARs used for non-invasive glucose sensing is reviewed, highlighting their operating principle, design requirements, limitations, and potential improvements needed to enhance the analysis of photoacoustic signals. The motivation behind this review is to identify and discuss main parameters crucial to the efficient design of PARs used in non-invasive glucose detection, which will be helpful for furthering the basic understanding of this technology and achieving the highly sensitive PAR required for non-invasive glucose monitoring.
Collapse
Affiliation(s)
- Md Rejvi Kaysir
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh
- Photonics Research Group, Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh
| | - Thasin Mohammad Zaman
- Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh
- Photonics Research Group, Department of Electrical and Electronic Engineering (EEE), Khulna University of Engineering & Technology (KUET), Khulna 9203, Bangladesh
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Jishen Wang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
6
|
Lo YL, Chen YS, Wang PY, Chang CM, Wei GT, Hung WC. Non-invasive glucose extraction by a single polarization rotator system in patients with diabetes. BIOMEDICAL OPTICS EXPRESS 2024; 15:4909-4924. [PMID: 39346983 PMCID: PMC11427183 DOI: 10.1364/boe.529032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 10/01/2024]
Abstract
This study utilizes a Mueller matrix-based system to extract accurate glucose levels from human fingertips, addressing challenges in skin complexity. Integration of domain knowledge and data science aims to enhance prediction accuracy using a Random Forest model. The primary goal is to improve glucose level predictions by selecting effective features based on the Pearson product-moment correlation coefficient (PPMCC). The interpolation compensates for delayed glucose concentration. This study integrates domain knowledge and data science, combining a Mueller matrix-based system and a random forest model. It is noted that 16 effective features were identified from 27 test points collected from a healthy volunteer in the laboratory. These features were divided into training and prediction sets in a ratio of 8:2. As a result, the regression coefficient, R2, was 0.8907 and the mean absolute relative difference (MARD) was 6.8%, respectively. This significantly improves prediction accuracy, demonstrating the model's robustness and reliability in accurately forecasting outcomes based on the identified features. In addition, in the Institutional Review Board (IRB) tests at NCKU's hospital, all data passed the same preprocessing and model. The measurement results from an individual diabetic patient demonstrate high accuracy for blood glucose concentrations below 150 mg/dL, with acceptable deviation at higher levels and no severe error zones. Over a three-month period, data from the participating diabetic patient showed a MARD of 4.44% with the R2 of 0.836, and the other patient recorded a MARD of 7.79% with the R2 of 0.855. The study shows the proposed approach accurately extracts glucose levels. Integrating domain knowledge, data science, and effective strategies significantly improves prediction accuracy.
Collapse
Affiliation(s)
- Yu-Lung Lo
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 701401, Taiwan
- Academy of Innovative Semiconductor and Sustainable Manufacturing (AISSM), National Cheng Kung University (NCKU), Tainan 701401, Taiwan
| | - Yi-Sheng Chen
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 701401, Taiwan
| | - Po-Yu Wang
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 701401, Taiwan
| | - Ching-Min Chang
- Department of Electrical Engineering, Da-Yeh University, Changhua 515006, Taiwan
| | - Guan-Ting Wei
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 701401, Taiwan
| | - Wei-Chun Hung
- Department of Mechanical Engineering, National Cheng Kung University (NCKU), Tainan 701401, Taiwan
| |
Collapse
|
7
|
Huang X, Yao C, Huang S, Zheng S, Liu Z, Liu J, Wang J, Chen HJ, Xie X. Technological Advances of Wearable Device for Continuous Monitoring of In Vivo Glucose. ACS Sens 2024; 9:1065-1088. [PMID: 38427378 DOI: 10.1021/acssensors.3c01947] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Managing diabetes is a chronic challenge today, requiring monitoring and timely insulin injections to maintain stable blood glucose levels. Traditional clinical testing relies on fingertip or venous blood collection, which has facilitated the emergence of continuous glucose monitoring (CGM) technology to address data limitations. Continuous glucose monitoring technology is recognized for tracking long-term blood glucose fluctuations, and its development, particularly in wearable devices, has given rise to compact and portable continuous glucose monitoring devices, which facilitates the measurement of blood glucose and adjustment of medication. This review introduces the development of wearable CGM-based technologies, including noninvasive methods using body fluids and invasive methods using implantable electrodes. The advantages and disadvantages of these approaches are discussed as well as the use of microneedle arrays in minimally invasive CGM. Microneedle arrays allow for painless transdermal puncture and are expected to facilitate the development of wearable CGM devices. Finally, we discuss the challenges and opportunities and look forward to the biomedical applications and future directions of wearable CGM-based technologies in biological research.
Collapse
Affiliation(s)
- Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Chuanjie Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shantao Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhengjie Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jing Liu
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510006, China
- The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
8
|
Jiang L, Zhang K, Yao Y, Liang J, Li J, Tian Z. Frequency-domain terahertz optoacoustics for non-contact quantitative detection of gas, liquid, and solid samples. OPTICS LETTERS 2024; 49:490-493. [PMID: 38300041 DOI: 10.1364/ol.510058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/12/2023] [Indexed: 02/02/2024]
Abstract
Terahertz optoacoustics (THz-OA) combines the advantages of abundant molecular characteristic absorptions in a terahertz band and the low attenuation through ultrasonic detection. Frequency-domain THz-OA, benefiting from the compact and the low cost of a continuous-wave THz source, has been used in gas detection and sensing. However, liquid and solid detections are hard to achieve due to the sensitivity limitation of existing technologies. Here we present a high-sensitivity frequency-domain THz-OA system with customized optoacoustic cells to accomplish non-contact quantitative detection of gas, liquid, and solid samples. The relationships between signal amplitudes and sample concentration, volume and temperature are discussed separately, revealing a potential application of this technology.
Collapse
|
9
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
10
|
Leung HMC, Forlenza GP, Prioleau TO, Zhou X. Noninvasive Glucose Sensing In Vivo. SENSORS (BASEL, SWITZERLAND) 2023; 23:7057. [PMID: 37631595 PMCID: PMC10458980 DOI: 10.3390/s23167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Blood glucose monitoring is an essential aspect of disease management for individuals with diabetes. Unfortunately, traditional methods require collecting a blood sample and thus are invasive and inconvenient. Recent developments in minimally invasive continuous glucose monitors have provided a more convenient alternative for people with diabetes to track their glucose levels 24/7. Despite this progress, many challenges remain to establish a noninvasive monitoring technique that works accurately and reliably in the wild. This review encompasses the current advancements in noninvasive glucose sensing technology in vivo, delves into the common challenges faced by these systems, and offers an insightful outlook on existing and future solutions.
Collapse
Affiliation(s)
- Ho Man Colman Leung
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| | - Gregory P. Forlenza
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | | | - Xia Zhou
- Department of Computer Science, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
11
|
John S, Hester S, Basij M, Paul A, Xavierselvan M, Mehrmohammadi M, Mallidi S. Niche preclinical and clinical applications of photoacoustic imaging with endogenous contrast. PHOTOACOUSTICS 2023; 32:100533. [PMID: 37636547 PMCID: PMC10448345 DOI: 10.1016/j.pacs.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023]
Abstract
In the past decade, photoacoustic (PA) imaging has attracted a great deal of popularity as an emergent diagnostic technology owing to its successful demonstration in both preclinical and clinical arenas by various academic and industrial research groups. Such steady growth of PA imaging can mainly be attributed to its salient features, including being non-ionizing, cost-effective, easily deployable, and having sufficient axial, lateral, and temporal resolutions for resolving various tissue characteristics and assessing the therapeutic efficacy. In addition, PA imaging can easily be integrated with the ultrasound imaging systems, the combination of which confers the ability to co-register and cross-reference various features in the structural, functional, and molecular imaging regimes. PA imaging relies on either an endogenous source of contrast (e.g., hemoglobin) or those of an exogenous nature such as nano-sized tunable optical absorbers or dyes that may boost imaging contrast beyond that provided by the endogenous sources. In this review, we discuss the applications of PA imaging with endogenous contrast as they pertain to clinically relevant niches, including tissue characterization, cancer diagnostics/therapies (termed as theranostics), cardiovascular applications, and surgical applications. We believe that PA imaging's role as a facile indicator of several disease-relevant states will continue to expand and evolve as it is adopted by an increasing number of research laboratories and clinics worldwide.
Collapse
Affiliation(s)
- Samuel John
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Scott Hester
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Maryam Basij
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, USA
| | - Avijit Paul
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | | | - Mohammad Mehrmohammadi
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, Rochester, NY, USA
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
12
|
Kaysir MR, Song J, Rassel S, Aloraynan A, Ban D. Progress and Perspectives of Mid-Infrared Photoacoustic Spectroscopy for Non-Invasive Glucose Detection. BIOSENSORS 2023; 13:716. [PMID: 37504114 PMCID: PMC10377086 DOI: 10.3390/bios13070716] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023]
Abstract
The prevalence of diabetes is rapidly increasing worldwide and can lead to a range of severe health complications that have the potential to be life-threatening. Patients need to monitor and control blood glucose levels as it has no cure. The development of non-invasive techniques for the measurement of blood glucose based on photoacoustic spectroscopy (PAS) has advanced tremendously in the last couple of years. Among them, PAS in the mid-infrared (MIR) region shows great promise as it shows the distinct fingerprint region for glucose. However, two problems are generally encountered when it is applied to monitor real samples for in vivo measurements in this MIR spectral range: (i) low penetration depth of MIR light into the human skin, and (ii) the effect of other interfering components in blood, which affects the selectivity of the detection system. This review paper systematically describes the basics of PAS in the MIR region, along with recent developments, technical challenges, and data analysis strategies, and proposes improvements for the detection sensitivity of glucose concentration in human bodies. It also highlights the recent trends of incorporating machine learning (ML) to enhance the detection sensitivity of the overall system. With further optimization of the experimental setup and incorporation of ML, this PAS in the MIR spectral region could be a viable solution for the non-invasive measurement of blood glucose in the near future.
Collapse
Affiliation(s)
- Md Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Department of Electrical and Electronic Engineering, Khulna University of Engineering & Technology, Khulna 9203, Bangladesh
| | - Jiaqi Song
- Department of Physics and Astronomy, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Abdulrahman Aloraynan
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
13
|
Sasaki R, Kino S, Matsuura Y. Mid-infrared photoacoustic spectroscopy based on ultrasound detection for blood component analysis. BIOMEDICAL OPTICS EXPRESS 2023; 14:3841-3852. [PMID: 37497499 PMCID: PMC10368030 DOI: 10.1364/boe.494615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
For the non-invasive measurement of biological tissue, a piezoelectric photoacoustic spectroscopy (PZT-PAS) system that detects a single frequency of ultrasound induced by the irradiation of pulse-modulated mid-infrared laser light was developed. PA spectra of the optical phantom and biological samples were obtained, and the relationship between the PA signal intensity and optical absorbance in the fingerprint region (930-1,200 cm-1) was analyzed to estimate the optical absorbance. The resonance vibration of the induced ultrasound was utilized to further increase the signal strength for biological tissue measurement. Consequently, PA spectrum reflecting the absorption of components in biological tissues was obtained.
Collapse
|
14
|
Veverka M, Menozzi L, Yao J. The sound of blood: photoacoustic imaging in blood analysis. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023; 18:100219. [PMID: 37538444 PMCID: PMC10399298 DOI: 10.1016/j.medntd.2023.100219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Blood analysis is a ubiquitous and critical aspect of modern medicine. Analyzing blood samples requires invasive techniques, various testing systems, and samples are limited to relatively small volumes. Photoacoustic imaging (PAI) is a novel imaging modality that utilizes non-ionizing energy that shows promise as an alternative to current methods. This paper seeks to review current applications of PAI in blood analysis for clinical use. Furthermore, we discuss obstacles to implementation and future directions to overcome these challenges. Firstly, we discuss three applications to cellular analysis of blood: sickle cell, bacteria, and circulating tumor cell detection. We then discuss applications to the analysis of blood plasma, including glucose detection and anticoagulation quantification. As such, we hope this article will serve as inspiration for PAI's potential application in blood analysis and prompt further studies to ultimately implement PAI into clinical practice.
Collapse
|
15
|
Aloraynan A, Rassel S, Kaysir MR, Ban D. Dual quantum cascade lasers for noninvasive glucose detection using photoacoustic spectroscopy. Sci Rep 2023; 13:7927. [PMID: 37193803 PMCID: PMC10188558 DOI: 10.1038/s41598-023-34912-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/09/2023] [Indexed: 05/18/2023] Open
Abstract
The combination of mid-infrared and photoacoustic spectroscopy has shown promising developments as a substitute for invasive glucose detection technology. A dual single-wavelength quantum cascade laser system has been developed using photoacoustic spectroscopy for noninvasive glucose monitoring. Biomedical skin phantoms with similar properties to human skin have been prepared with blood components at different glucose concentrations as test models for the setup. The detection sensitivity of the system has been improved to ± 12.5 mg/dL in the hyperglycemia blood glucose ranges. An ensemble machine learning classifier has been developed to predict the glucose level in the presence of blood components. The model, which was trained with 72,360 unprocessed datasets, achieved a 96.7% prediction accuracy with 100% of the predicted data located in zones A and B of Clarke's error grid analysis. These findings fulfill both the US Food and Drug Administration and Health Canada requirements for glucose monitors.
Collapse
Affiliation(s)
- Abdulrahman Aloraynan
- Department of Electrical Engineering, Umm Al-Qura University, Makkah, Saudi Arabia.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Md Rejvi Kaysir
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
16
|
Yang L, Zhang Z, Wei X, Yang Y. Glucose diagnosis system combining machine learning and NIR photoacoustic multispectral using a low power CW laser. BIOMEDICAL OPTICS EXPRESS 2023; 14:1685-1702. [PMID: 37078043 PMCID: PMC10110296 DOI: 10.1364/boe.485296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 05/03/2023]
Abstract
Non-invasive, portable, economical, dynamic blood glucose monitoring device has become a functional requirement for diabetes in his regulating entire life. In a photoacoustic (PA) multispectral near-infrared diagnosis system, the glucose in aqueous solutions was excited by low power (order of milliwatts) CW laser whose wavelengths were from 1500 to 1630 nm. The glucose in aqueous solutions to be analyzed was contained within the photoacoustic cell (PAC). The PA multispectral signals were measured using a piezoelectric detector, and then the voltage signals from the piezoelectric detector were amplified with a precision Lock-in Amplifier (MFLI500K). The continuously tunable lasers were used to verify the various influencing factors of the PA signal, and the PA spectrum of the glucose solution was examined. Subsequently, six wavelengths with high power were selected at approximately equal intervals from 1500 to 1630 nm, and the gaussian process regression of the quadratic rational kernel was used to collect data through these wavelengths to predict the glucose concentration. The experimental results showed that the near-infrared PA multispectral diagnosis system could be engineered for the prediction of the glucose level (more than 92%, zone A of Clarke Error Grid). Subsequently, the model trained with glucose solution was used to predict serum glucose. With the increase of serum glucose content, the prediction results of the model also showed a high linear relationship, indicating that the photoacoustic method was sensitive to the detection of glucose concentration changes. The results of our study have the potential to not only better develop the PA blood glucose meter but also extend the viability into the detection of otherwise blood components.
Collapse
Affiliation(s)
- Lifeng Yang
- School of Optoelectronic Science and
Engineering, University of Electronic Science and
Technology of China, Chengdu 610054, China
| | - Zhaojiang Zhang
- School of Optoelectronic Science and
Engineering, University of Electronic Science and
Technology of China, Chengdu 610054, China
| | - Xin Wei
- School of Optoelectronic Science and
Engineering, University of Electronic Science and
Technology of China, Chengdu 610054, China
| | - Yan Yang
- Department of Endocrinology &
Metabolism, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Chinese Academy of Sciences
Sichuan Translational Medicine Research Hospital,
Chengdu 610072, China
| |
Collapse
|
17
|
Choi W, Park B, Choi S, Oh D, Kim J, Kim C. Recent Advances in Contrast-Enhanced Photoacoustic Imaging: Overcoming the Physical and Practical Challenges. Chem Rev 2023. [PMID: 36642892 DOI: 10.1021/acs.chemrev.2c00627] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
For decades now, photoacoustic imaging (PAI) has been investigated to realize its potential as a niche biomedical imaging modality. Despite its highly desirable optical contrast and ultrasonic spatiotemporal resolution, PAI is challenged by such physical limitations as a low signal-to-noise ratio (SNR), diminished image contrast due to strong optical attenuation, and a lower-bound on spatial resolution in deep tissue. In addition, contrast-enhanced PAI has faced practical limitations such as insufficient cell-specific targeting due to low delivery efficiency and difficulties in developing clinically translatable agents. Identifying these limitations is essential to the continuing expansion of the field, and substantial advances in developing contrast-enhancing agents, complemented by high-performance image acquisition systems, have synergistically dealt with the challenges of conventional PAI. This review covers the past four years of research on pushing the physical and practical challenges of PAI in terms of SNR/contrast, spatial resolution, targeted delivery, and clinical application. Promising strategies for dealing with each challenge are reviewed in detail, and future research directions for next generation contrast-enhanced PAI are discussed.
Collapse
Affiliation(s)
- Wonseok Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Byullee Park
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Seongwook Choi
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Donghyeon Oh
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Jongbeom Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Medical Science and Engineering, Graduate School of Artificial Intelligence, and Medical Device Innovation Center, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang37673, Republic of Korea
| |
Collapse
|
18
|
Luna-Canales IC, Delgado-Buenrostro NL, Chirino YI, Nava-Arzaluz G, Piñón-Segundo E, Martínez-Cruz G, Ganem-Rondero A. Curcumin-loaded microemulsion: formulation, characterization, and in vitro skin penetration. Drug Dev Ind Pharm 2023; 49:42-51. [PMID: 36803628 DOI: 10.1080/03639045.2023.2182121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE Formulation of curcumin in a microemulsion with a high loading capacity and that favors its penetration into the skin. SIGNIFICANCE Take advantage of the properties of microemulsions to promote the penetration of curcumin into the skin, with the aim of enhancing its therapeutic effects. METHODS Curcumin was formulated in microemulsions based on oleic acid (oil phase), Tween® 80 (surfactant), and Transcutol® HP (cosurfactant). The microemulsion formation area was mapped by constructing pseudo-ternary diagrams for surfactant:co-surfactant ratios 1:1, 1:2, and 2:1. Microemulsions were characterized through measurements of specific weight, refractive index, conductivity, viscosity, droplet size, and in vitro skin permeation studies. RESULTS Nine microemulsions were prepared and characterized, showing clear, stable formulations with globule size dependent on the proportion of the components. The microemulsion with the highest loading capacity (60 mg/mL), based on Tween® 80, Transcutol® HP, oleic acid, and water (40:40:10:10) was able to penetrate the viable epidermis, finding a total amount of curcumin in the receptor medium at 24 h of 10.17 ± 9.7 µg/cm2. The distribution of curcumin in the skin, visualized by confocal laser scanning microscopy, showed that the maximum amount was located between 20 and 30 µm. CONCLUSION The inclusion of curcumin in a microemulsion allows its passage into and through the skin. The localization of curcumin, especially in the viable epidermis, would be important for those cases where local conditions are sought to be treated.
Collapse
Affiliation(s)
- Irene Carolina Luna-Canales
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322, Campo 1), Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | | | - Yolanda I Chirino
- Laboratorio 10, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Guadalupe Nava-Arzaluz
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322, Campo 1), Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Elizabeth Piñón-Segundo
- Laboratorio de Sistemas Farmacéuticos de Liberación Modificada (L-13, UIM), Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Graciela Martínez-Cruz
- Laboratorio de Reometría, Nave 3000, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| | - Adriana Ganem-Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322, Campo 1), Universidad Nacional Autónoma de México, Cuautitlán Izcalli, Mexico
| |
Collapse
|
19
|
Fang Z, Gao F, Jin H, Liu S, Wang W, Zhang R, Zheng Z, Xiao X, Tang K, Lou L, Tang KT, Chen J, Zheng Y. A Review of Emerging Electromagnetic-Acoustic Sensing Techniques for Healthcare Monitoring. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:1075-1094. [PMID: 36459601 DOI: 10.1109/tbcas.2022.3226290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Conventional electromagnetic (EM) sensing techniques such as radar and LiDAR are widely used for remote sensing, vehicle applications, weather monitoring, and clinical monitoring. Acoustic techniques such as sonar and ultrasound sensors are also used for consumer applications, such as ranging and in vivo medical/healthcare applications. It has been of long-term interest to doctors and clinical practitioners to realize continuous healthcare monitoring in hospitals and/or homes. Physiological and biopotential signals in real-time serve as important health indicators to predict and prevent serious illness. Emerging electromagnetic-acoustic (EMA) sensing techniques synergistically combine the merits of EM sensing with acoustic imaging to achieve comprehensive detection of physiological and biopotential signals. Further, EMA enables complementary fusion sensing for challenging healthcare settings, such as real-world long-term monitoring of treatment effects at home or in remote environments. This article reviews various examples of EMA sensing instruments, including implementation, performance, and application from the perspectives of circuits to systems. The novel and significant applications to healthcare are discussed. Three types of EMA sensors are presented: (1) Chip-based radar sensors for health status monitoring, (2) Thermo-acoustic sensing instruments for biomedical applications, and (3) Photoacoustic (PA) sensing and imaging systems, including dedicated reconstruction algorithms were reviewed from time-domain, frequency-domain, time-reversal, and model-based solutions. The future of EMA techniques for continuous healthcare with enhanced accuracy supported by artificial intelligence (AI) is also presented.
Collapse
|
20
|
Batvani N, Tehrani MA, Alimohammadi S, Kiani MA. Non-enzymatic amperometric glucose sensor based on bimetal-oxide modified carbon fiber ultra-microelectrode. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
21
|
Todaro B, Begarani F, Sartori F, Luin S. Is Raman the best strategy towards the development of non-invasive continuous glucose monitoring devices for diabetes management? Front Chem 2022; 10:994272. [PMID: 36226124 PMCID: PMC9548653 DOI: 10.3389/fchem.2022.994272] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetes has no well-established cure; thus, its management is critical for avoiding severe health complications involving multiple organs. This requires frequent glycaemia monitoring, and the gold standards for this are fingerstick tests. During the last decades, several blood-withdrawal-free platforms have been being studied to replace this test and to improve significantly the quality of life of people with diabetes (PWD). Devices estimating glycaemia level targeting blood or biofluids such as tears, saliva, breath and sweat, are gaining attention; however, most are not reliable, user-friendly and/or cheap. Given the complexity of the topic and the rise of diabetes, a careful analysis is essential to track scientific and industrial progresses in developing diabetes management systems. Here, we summarize the emerging blood glucose level (BGL) measurement methods and report some examples of devices which have been under development in the last decades, discussing the reasons for them not reaching the market or not being really non-invasive and continuous. After discussing more in depth the history of Raman spectroscopy-based researches and devices for BGL measurements, we will examine if this technique could have the potential for the development of a user-friendly, miniaturized, non-invasive and continuous blood glucose-monitoring device, which can operate reliably, without inter-patient variability, over sustained periods.
Collapse
Affiliation(s)
- Biagio Todaro
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| | - Filippo Begarani
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Federica Sartori
- P.B.L. SRL, Solignano, PR, Italy
- Omnidermal Biomedics SRL, Solignano, PR, Italy
| | - Stefano Luin
- NEST Laboratory, Scuola Normale SuperiorePisa, Italy
- NEST, Istituto Nanoscienze, CNR, Pisa, Italy
- Correspondence: Biagio Todaro, ; Stefano Luin,
| |
Collapse
|
22
|
Glucose Determination by a Single 1535 nm Pulsed Photoacoustic Technique: A Multiple Calibration for the External Factors. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:9593843. [PMID: 36247088 PMCID: PMC9553719 DOI: 10.1155/2022/9593843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
Photoacoustic spectroscopy has been proved to be a potential method for noninvasive blood glucose detection. We used 1535 nm pulsed laser to excite photoacoustic signal in glucose solution and then explored the influence of different glucose concentration on photoacoustic signal to analyze the sensitivity of photoacoustic signal to glucose at this wavelength. We designed a simple photoacoustic cell structure, which used a focused ultrasonic transducer to receive signals, so as to reduce signal attenuation. In terms of the results, we have found that for high-concentration glucose solutions, the results have strong linearity and discrimination, and when the concentration is close to the human body level, the signal difference is not so obvious. Therefore, we explore the external factors affecting the photoacoustic signal in detail and propose a calibration method. Through calibration, the signal generated by the low-concentration glucose solution also has a good linearity.
Collapse
|
23
|
Jeon HJ, Kim HS, Chung E, Lee DY. Nanozyme-based colorimetric biosensor with a systemic quantification algorithm for noninvasive glucose monitoring. Theranostics 2022; 12:6308-6338. [PMID: 36168630 PMCID: PMC9475463 DOI: 10.7150/thno.72152] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/20/2022] [Indexed: 11/10/2022] Open
Abstract
Diabetes mellitus accompanies an abnormally high glucose level in the bloodstream. Early diagnosis and proper glycemic management of blood glucose are essential to prevent further progression and complications. Biosensor-based colorimetric detection has progressed and shown potential in portable and inexpensive daily assessment of glucose levels because of its simplicity, low-cost, and convenient operation without sophisticated instrumentation. Colorimetric glucose biosensors commonly use natural enzymes that recognize glucose and chromophores that detect enzymatic reaction products. However, many natural enzymes have inherent defects, limiting their extensive application. Recently, nanozyme-based colorimetric detection has drawn attention due to its merits including high sensitivity, stability under strict reaction conditions, flexible structural design with low-cost materials, and adjustable catalytic activities. This review discusses various nanozyme materials, colorimetric analytic methods and mechanisms, recent machine learning based analytic methods, quantification systems, applications and future directions for monitoring and managing diabetes.
Collapse
Affiliation(s)
- Hee-Jae Jeon
- Weldon School of Biomedical Engineering, Purdue University, Indiana 47906, USA
- Department of Mechanical and Biomedical Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyung Shik Kim
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- AI Graduate School, GIST, Gwangju 61005, Republic of Korea
- Research Center for Photon Science Technology, GIST, Gwangju 61005, Republic of Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK FOUR Biopharmaceutical Innovation Leader for Education and Research Group, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology (INST), Hanyang University, Seoul 04763, Republic of Korea
- Institute for Bioengineering and Biopharmaceutical Research (IBBR), Hanyang University, Seoul 04763, Republic of Korea
- Elixir Pharmatech Inc., Seoul 07463, Republic of Korea
| |
Collapse
|
24
|
Bogue-Jimenez B, Huang X, Powell D, Doblas A. Selection of Noninvasive Features in Wrist-Based Wearable Sensors to Predict Blood Glucose Concentrations Using Machine Learning Algorithms. SENSORS (BASEL, SWITZERLAND) 2022; 22:3534. [PMID: 35591223 PMCID: PMC9100498 DOI: 10.3390/s22093534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Glucose monitoring technologies allow users to monitor glycemic fluctuations (e.g., blood glucose levels). This is particularly important for individuals who have diabetes mellitus (DM). Traditional self-monitoring blood glucose (SMBG) devices require the user to prick their finger and extract a blood drop to measure the blood glucose based on chemical reactions with the blood. Unlike traditional glucometer devices, noninvasive continuous glucose monitoring (NICGM) devices aim to solve these issues by consistently monitoring users' blood glucose levels (BGLs) without invasively acquiring a sample. In this work, we investigated the feasibility of a novel approach to NICGM using multiple off-the-shelf wearable sensors and learning-based models (i.e., machine learning) to predict blood glucose. Two datasets were used for this study: (1) the OhioT1DM dataset, provided by the Ohio University; and (2) the UofM dataset, created by our research team. The UofM dataset consists of fourteen features provided by six sensors for studying possible relationships between glucose and noninvasive biometric measurements. Both datasets are passed through a machine learning (ML) pipeline that tests linear and nonlinear models to predict BGLs from the set of noninvasive features. The results of this pilot study show that the combination of fourteen noninvasive biometric measurements with ML algorithms could lead to accurate BGL predictions within the clinical range; however, a larger dataset is required to make conclusions about the feasibility of this approach.
Collapse
Affiliation(s)
- Brian Bogue-Jimenez
- Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN 38152, USA;
| | - Xiaolei Huang
- Department of Computer Science, The University of Memphis, Memphis, TN 38152, USA;
| | - Douglas Powell
- College of Health Sciences, The University of Memphis, Memphis, TN 38152, USA;
| | - Ana Doblas
- Department of Electrical and Computer Engineering, The University of Memphis, Memphis, TN 38152, USA;
| |
Collapse
|
25
|
Aloraynan A, Rassel S, Xu C, Ban D. A Single Wavelength Mid-Infrared Photoacoustic Spectroscopy for Noninvasive Glucose Detection Using Machine Learning. BIOSENSORS 2022; 12:bios12030166. [PMID: 35323436 PMCID: PMC8946023 DOI: 10.3390/bios12030166] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
According to the International Diabetes Federation, 530 million people worldwide have diabetes, with more than 6.7 million reported deaths in 2021. Monitoring blood glucose levels is essential for individuals with diabetes, and developing noninvasive monitors has been a long-standing aspiration in diabetes management. The ideal method for monitoring diabetes is to obtain the glucose concentration level with a fast, accurate, and pain-free measurement that does not require blood drawing or a surgical operation. Multiple noninvasive glucose detection techniques have been developed, including bio-impedance spectroscopy, electromagnetic sensing, and metabolic heat conformation. Nevertheless, reliability and consistency challenges were reported for these methods due to ambient temperature and environmental condition sensitivity. Among all the noninvasive glucose detection techniques, optical spectroscopy has rapidly advanced. A photoacoustic system has been developed using a single wavelength quantum cascade laser, lasing at a glucose fingerprint of 1080 cm-1 for noninvasive glucose monitoring. The system has been examined using artificial skin phantoms, covering the normal and hyperglycemia blood glucose ranges. The detection sensitivity of the system has been improved to ±25 mg/dL using a single wavelength for the entire range of blood glucose. Machine learning has been employed to detect glucose levels using photoacoustic spectroscopy in skin samples. Ensemble machine learning models have been developed to measure glucose concentration using classification techniques. The model has achieved a 90.4% prediction accuracy with 100% of the predicted data located in zones A and B of Clarke's error grid analysis. This finding fulfills the US Food and Drug Administration requirements for glucose monitors.
Collapse
Affiliation(s)
- Abdulrahman Aloraynan
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada; (S.R.); (C.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Department of Electrical Engineering, Umm Al-Qura University, Makkah 21955, Saudi Arabia
- Correspondence: (A.A.); (D.B.)
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada; (S.R.); (C.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Chao Xu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada; (S.R.); (C.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada; (S.R.); (C.X.)
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave. W, Waterloo, ON N2L 3G1, Canada
- Correspondence: (A.A.); (D.B.)
| |
Collapse
|
26
|
Yin X, Gao M, Miao R, Zhang L, Zhang X, Liu L, Shao X, Tittel FK. Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H 2S. OPTICS EXPRESS 2021; 29:34258-34268. [PMID: 34809220 DOI: 10.1364/oe.441698] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A ppb-level H2S and CO photoacoustic spectroscopy (PAS) gas sensor was developed by using a two-stage commercial optical fiber amplifier with a full output power of 10 W. Two near-infrared diode lasers with the central wavenumbers of 6320.6 cm-1 and 6377.4 cm-1 were employed as the excitation laser source. A time-division multiplexing method was used to simultaneously detect CO and H2S with an optical switch. A dual-resonator structural photoacoustic cell (PAC) was theoretically simulated and designed with a finite element analysis. A µV level background noise was achieved with the differential and symmetrical PAC. The performance of the multi-component sensor was evaluated after the optimization of frequency, pressure and modulation depth. The minimum detection limits of 31.7 ppb and 342.7 ppb were obtained for H2S and CO at atmospheric pressure.
Collapse
|
27
|
Patchava KC, Ge SS, Benaissa M. Sammon's mapping regression for the quantitative analysis of glucose from both mid infrared and near infrared spectra. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4485-4494. [PMID: 34505598 DOI: 10.1039/d1ay00930c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This paper proposes a novel regression method based on Sammon's mapping dimensionality reduction technique for the quantification of glucose from both near infrared and mid infrared spectra. The proposed regression model was validated to determine the concentration of glucose from the spectra of aqueous mixtures consisting of human serum albumin and glucose in phosphate buffer solution from both near infrared (NIR) and mid infrared (MIR) regions. The performance of the proposed prediction model has been analysed with traditional regression methods principal component regression (PCR) and partial least squares regression (PLSR) models. The results indicate that the proposed model yields improved prediction performance compared to PCR and PLSR methods. In detail, the proposed Sammon's mapping regression (SMR) model provides better prediction ability by reducing the root mean square error of prediction (RMSEP) from 35.74 mg dL-1 for PCR and 31.39 mg dL-1 for PLSR to 21.89 mg dL-1 for the proposed regression model in the MIR region and the RMSEP has been reduced from 38.15 mg dL-1 for the PCR model and 37.5 mg dL-1 for the PLSR model to 29.74 mg dL-1 for the SMR model in the NIR region.
Collapse
Affiliation(s)
| | - Shuzhi Sam Ge
- Department of Electronics and Computer Engineering, National University of Singapore, Singapore.
| | - Mohammed Benaissa
- Department of Electronic and Electrical Engineering, The University of Sheffield, UK.
| |
Collapse
|
28
|
Orfanakis M, Tserevelakis GJ, Zacharakis G. A Cost-Efficient Multiwavelength LED-Based System for Quantitative Photoacoustic Measurements. SENSORS 2021; 21:s21144888. [PMID: 34300627 PMCID: PMC8309896 DOI: 10.3390/s21144888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
The unique ability of photoacoustic (PA) sensing to provide optical absorption information of biomolecules deep inside turbid tissues with high sensitivity has recently enabled the development of various novel diagnostic systems for biomedical applications. In many cases, PA setups can be bulky, complex, and costly, as they typically require the integration of expensive Q-switched nanosecond lasers, and also presents limited wavelength availability. This article presents a compact, cost-efficient, multiwavelength PA sensing system for quantitative measurements, by utilizing two high-power LED sources emitting at central wavelengths of 444 and 628 nm, respectively, and a single-element ultrasonic transducer at 3.5 MHz for signal detection. We investigate the performance of LEDs in pulsed mode and explore the dependence of PA responses on absorber's concentration and applied energy fluence using tissue-mimicking phantoms demonstrating both optical absorption and scattering properties. Finally, we apply the developed system on the spectral unmixing of two absorbers contained at various relative concentrations in the phantoms, to provide accurate estimations with absolute deviations ranging between 0.4 and 12.3%. An upgraded version of the PA system may provide valuable in-vivo multiparametric measurements of important biomarkers, such as hemoglobin oxygenation, melanin concentration, local lipid content, and glucose levels.
Collapse
Affiliation(s)
- Michalis Orfanakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- School of Medicine, University of Crete, GR-71003 Heraklion, Greece
| | - George J. Tserevelakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
| | - Giannis Zacharakis
- Foundation for Research and Technology Hellas, Institute of Electronic Structure and Laser, N. Plastira 100, GR-70013 Heraklion, Greece; (M.O.); (G.J.T.)
- Correspondence:
| |
Collapse
|
29
|
Deán-Ben XL, Razansky D. Optoacoustic imaging of the skin. Exp Dermatol 2021; 30:1598-1609. [PMID: 33987867 DOI: 10.1111/exd.14386] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022]
Abstract
Optoacoustic (OA, photoacoustic) imaging capitalizes on the synergistic combination of light excitation and ultrasound detection to empower biological and clinical investigations with rich optical contrast while effectively bridging the gap between micro and macroscopic imaging realms. State-of-the-art OA embodiments consistently provide images at micron-scale resolution through superficial tissue layers by means of focused illumination that can be smoothly exchanged for acoustic-resolution images at diffuse light depths of several millimetres to centimetres via ultrasound beamforming or tomographic reconstruction. Taken together, this unique multi-scale imaging capacity opens unprecedented capabilities for high-resolution in vivo interrogations of the skin at scalable depths. Moreover, diverse anatomical and functional information is retrieved via dynamic mapping of endogenous chromophores such as haemoglobin, melanin, lipids, collagen, water and others. This, along with the use of non-ionizing radiation, facilitates a clinical translation of the OA modalities. We review recent progress in OA imaging of the skin in preclinical and clinical studies exploiting the rich contrast provided by endogenous substances in tissues. The imaging capabilities of existing approaches are discussed in the context of initial translational studies on skin cancer, inflammatory skin diseases, wounds and other conditions.
Collapse
Affiliation(s)
- Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
30
|
Yu Z, Jiang N, Kazarian SG, Tasoglu S, Yetisen AK. Optical sensors for continuous glucose monitoring. ACTA ACUST UNITED AC 2021. [DOI: 10.1088/2516-1091/abe6f8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
31
|
Zhang R, Luo Y, Jin H, Gao F, Zheng Y. Time-domain photoacoustic waveform analysis for glucose measurement. Analyst 2021; 145:7964-7972. [PMID: 33034591 DOI: 10.1039/d0an01678k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Photoacoustic (PA) effect is the product of light-ultrasound interactions and its time-domain waveform contains rich information. Besides optical absorption, the PA waveform inherently consists of other mechanical and thermal properties of the sample. They also have correlation with the target composition but have not been utilized in conventional PA spectroscopy. In this article, we propose a new concept named time-domain photoacoustic waveform spectroscopy (tPAWS) for chemical component quantification. It employs multiple variables inherently contained in the PA waveform excited by a single wavelength laser to extract informative features. The demonstration of glucose measurement in human blood serum (HBS) shows superior sensitivity and accuracy enhancement, compared to conventional amplitude-based PA measurement and NIR spectroscopy. Thanks to the sensitivity and accuracy of tPAWS, multiple wavelength sources and complex instrumentation used in conventional spectroscopic sensing methods can be avoided. TPAWS, as a novel physics-inspired sensing method, shows great potential for complementing or surpassing the current spectroscopic methods as a new sensing technique for chemical analysis.
Collapse
Affiliation(s)
- Ruochong Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | | | | | | | | |
Collapse
|
32
|
Delbeck S, Heise HM. Evaluation of Opportunities and Limitations of Mid-Infrared Skin Spectroscopy for Noninvasive Blood Glucose Monitoring. J Diabetes Sci Technol 2021; 15:19-27. [PMID: 32590911 PMCID: PMC7780363 DOI: 10.1177/1932296820936224] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND A wide range of optical techniques has recently been presented for the development of noninvasive methods for blood glucose sensing based on multivariate skin spectrum analysis, and most recent studies are reviewed in short by us. The vibrational spectral fingerprints of glucose, as especially found in the mid-infrared or Raman spectrum, have been suggested for achieving largest selectivity for the development of noninvasive blood glucose methods. METHODS Here, the different aspects on integral skin measurements are presented, which are much dependent on the absorption characteristics of water as the main skin constituent. In particular, different mid-infrared measurement techniques as realized recently are discussed. The limitations of the use of the attenuated total reflection technique in particular are elaborated, and confounding skin or saliva spectral features are illustrated and discussed in the light of recently published works, claiming that the attenuated total reflection technique can be utilized for noninvasive measurements. RESULTS It will be shown that the penetration depth of the infrared radiation with wavelengths around 10 µm is the essential parameter, which can be modulated by different measurement techniques as with photothermal or diffuse reflection. However, the law of physics is limiting the option of using the attenuated total reflection technique with waveguides from diamond or similar optical materials. CONCLUSIONS There are confounding features from mucosa, stratum corneum, or saliva, which have been misinterpreted for glucose measurements. Results of an earlier study with multivariate evaluation based on glucose fingerprint features are again referred to as a negative experimental proof.
Collapse
Affiliation(s)
- Sven Delbeck
- South-Westphalia University of Applied Sciences, Interdisciplinary Center for Life Sciences, Iserlohn, Germany
| | - H. Michael Heise
- South-Westphalia University of Applied Sciences, Interdisciplinary Center for Life Sciences, Iserlohn, Germany
- H. Michael Heise, PhD, South-Westphalia University of Applied Sciences, Interdisciplinary Center for Life Sciences, Frauenstuhlweg 31, D-58644 Iserlohn, Germany.
| |
Collapse
|
33
|
Xu C, Rassel S, Zhang S, Aloraynan A, Ban D. Single-wavelength water muted photoacoustic system for detecting physiological concentrations of endogenous molecules. BIOMEDICAL OPTICS EXPRESS 2021; 12:666-675. [PMID: 33659094 PMCID: PMC7899505 DOI: 10.1364/boe.413086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/27/2020] [Accepted: 11/29/2020] [Indexed: 05/02/2023]
Abstract
Based on the breakthrough technology of water muting on photoacoustic spectroscopy, a single wavelength photoacoustic system in the short-wavelength-infrared (SWIR) region was developed to sense the endogenous molecules (e.g. glucose, lactate, triglyceride, and serum albumin found in blood and interstitial fluid) in aqueous media. The system implemented a robust photoacoustic resonant cell that can significantly enhance the signal-to-noise ratio of the acoustic waves. The sensitivity of the system was explored, and the experimental results exhibit a precision detection of physiological concentrations of biomolecules by combining the techniques of water muting and photoacoustic resonant amplification in a portable and low-cost single wavelength laser system.
Collapse
Affiliation(s)
- Chao Xu
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Steven Zhang
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Abdulrahman Aloraynan
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| | - Dayan Ban
- Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
34
|
Tang L, Chang SJ, Chen CJ, Liu JT. Non-Invasive Blood Glucose Monitoring Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6925. [PMID: 33291519 PMCID: PMC7731259 DOI: 10.3390/s20236925] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022]
Abstract
In recent years, with the rise of global diabetes, a growing number of subjects are suffering from pain and infections caused by the invasive nature of mainstream commercial glucose meters. Non-invasive blood glucose monitoring technology has become an international research topic and a new method which could bring relief to a vast number of patients. This paper reviews the research progress and major challenges of non-invasive blood glucose detection technology in recent years, and divides it into three categories: optics, microwave and electrochemistry, based on the detection principle. The technology covers medical, materials, optics, electromagnetic wave, chemistry, biology, computational science and other related fields. The advantages and limitations of non-invasive and invasive technologies as well as electrochemistry and optics in non-invasives are compared horizontally in this paper. In addition, the current research achievements and limitations of non-invasive electrochemical glucose sensing systems in continuous monitoring, point-of-care and clinical settings are highlighted, so as to discuss the development tendency in future research. With the rapid development of wearable technology and transdermal biosensors, non-invasive blood glucose monitoring will become more efficient, affordable, robust, and more competitive on the market.
Collapse
Affiliation(s)
- Liu Tang
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shwu Jen Chang
- Department of Biomedical Engineering, I-Shou University, Kaohsiung City 82445, Taiwan;
| | - Ching-Jung Chen
- Research Center for Materials Science and Opti-Electronic Technology, School of Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jen-Tsai Liu
- Research Center for Materials Science and Opti-Electronic Technology, College of Materials Science and Opti-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
35
|
Widely-Tunable Quantum Cascade-Based Sources for the Development of Optical Gas Sensors. SENSORS 2020; 20:s20226650. [PMID: 33233578 PMCID: PMC7699741 DOI: 10.3390/s20226650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 01/22/2023]
Abstract
Spectroscopic techniques based on Distributed FeedBack (DFB) Quantum Cascade Lasers (QCL) provide good results for gas detection in the mid-infrared region in terms of sensibility and selectivity. The main limitation is the QCL relatively low tuning range (~10 cm-1) that prevents from monitoring complex species with broad absorption spectra in the infrared region or performing multi-gas sensing. To obtain a wider tuning range, the first solution presented in this paper consists of the use of a DFB QCL array. Tuning ranges from 1335 to 1387 cm-1 and from 2190 to 2220 cm-1 have been demonstrated. A more common technique that will be presented in a second part is to implement a Fabry-Perot QCL chip in an external-cavity (EC) system so that the laser could be tuned on its whole gain curve. The use of an EC system also allows to perform Intra-Cavity Laser Absorption Spectroscopy, where the gas sample is placed within the laser resonator. Moreover, a technique only using the QCL compliance voltage technique can be used to retrieve the spectrum of the gas inside the cavity, thus no detector outside the cavity is needed. Finally, a specific scheme using an EC coherent QCL array can be developed. All these widely-tunable Quantum Cascade-based sources can be used to demonstrate the development of optical gas sensors.
Collapse
|
36
|
Zheng H, Liu Y, Lin H, Kan R, Patimisco P, Sampaolo A, Giglio M, Zhu W, Yu J, Tittel FK, Spagnolo V, Chen Z. Sub-ppb-level CH 4 detection by exploiting a low-noise differential photoacoustic resonator with a room-temperature interband cascade laser. OPTICS EXPRESS 2020; 28:19446-19456. [PMID: 32672221 DOI: 10.1364/oe.391322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
An ultra-highly sensitive and robust CH4 sensor is reported based on a 3.3 µm interband cascade laser (ICL) and a low-noise differential photoacoustic (PAS) cell. The ICL emission wavelength targeted a fundamental absorption line of CH4 at 2988.795 cm-1 with an intensity of 1.08 × 10-19 cm/molecule. The double-pass and differential design of the PAS cell effectively enhanced the PAS signal amplitude and decreased its background noise. The wavelength modulation depth, operating pressure and V-T relaxation promotion were optimized to maximize the sensor detection limit. With an integration time of 90 s, a detection limit of 0.6 ppb was achieved. No additional water or air laser cooling were required and thereby allowing the realization of a compact and robust CH4 sensor.
Collapse
|
37
|
Rassel S, Xu C, Zhang S, Ban D. Noninvasive blood glucose detection using a quantum cascade laser. Analyst 2020; 145:2441-2456. [PMID: 32167098 DOI: 10.1039/c9an02354b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A Quantum Cascade Laser (QCL) was invented in the late 90s as a promising mid-infrared light source and it has contributed to the fields of industry, military, medicine, and biology. The room temperature operation, watt-level output power, compact size, and wide tuning capability of this laser advanced the field of noninvasive blood glucose detection with the use of transmission, absorption, and photoacoustic spectroscopy. This review provides a complete overview of the recent progress and technical details of these spectroscopy techniques, using QCL as an infrared light source for detecting blood glucose concentrations in diabetic patients.
Collapse
Affiliation(s)
- Shazzad Rassel
- Waterloo Institute for Nanotechnology and Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | | | | | | |
Collapse
|
38
|
Shokrekhodaei M, Quinones S. Review of Non-invasive Glucose Sensing Techniques: Optical, Electrical and Breath Acetone. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1251. [PMID: 32106464 PMCID: PMC7085605 DOI: 10.3390/s20051251] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/12/2022]
Abstract
Annual deaths in the U.S. attributed to diabetes are expected to increase from 280,210 in 2015 to 385,840 in 2030. The increase in the number of people affected by diabetes has made it one of the major public health challenges around the world. Better management of diabetes has the potential to decrease yearly medical costs and deaths associated with the disease. Non-invasive methods are in high demand to take the place of the traditional finger prick method as they can facilitate continuous glucose monitoring. Research groups have been trying for decades to develop functional commercial non-invasive glucose measurement devices. The challenges associated with non-invasive glucose monitoring are the many factors that contribute to inaccurate readings. We identify and address the experimental and physiological challenges and provide recommendations to pave the way for a systematic pathway to a solution. We have reviewed and categorized non-invasive glucose measurement methods based on: (1) the intrinsic properties of glucose, (2) blood/tissue properties and (3) breath acetone analysis. This approach highlights potential critical commonalities among the challenges that act as barriers to future progress. The focus here is on the pertinent physiological aspects, remaining challenges, recent advancements and the sensors that have reached acceptable clinical accuracy.
Collapse
Affiliation(s)
- Maryamsadat Shokrekhodaei
- Department of Electrical and Computer Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Stella Quinones
- Department of Metallurgical, Materials and Biomedical Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
39
|
Infrared Spectroscopy with a Fiber-Coupled Quantum Cascade Laser for Attenuated Total Reflection Measurements Towards Biomedical Applications. SENSORS 2019; 19:s19235130. [PMID: 31771133 PMCID: PMC6929073 DOI: 10.3390/s19235130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/18/2022]
Abstract
The development of rapid and accurate biomedical laser spectroscopy systems in the mid-infrared has been enabled by the commercial availability of external-cavity quantum cascade lasers (EC-QCLs). EC-QCLs are a preferable alternative to benchtop instruments such as Fourier transform infrared spectrometers for sensor development as they are small and have high spectral power density. They also allow for the investigation of multiple analytes due to their broad tuneability and through the use of multivariate analysis. This article presents an in vitro investigation with two fiber-coupled measurement setups based on attenuated total reflection spectroscopy and direct transmission spectroscopy for sensing. A pulsed EC-QCL (1200–900 cm−1) was used for measurements of glucose and albumin in aqueous solutions, with lactate and urea as interferents. This analyte composition was chosen as an example of a complex aqueous solution with relevance for biomedical sensors. Glucose concentrations were determined in both setup types with root-mean-square error of cross-validation (RMSECV) of less than 20 mg/dL using partial least-squares (PLS) regression. These results demonstrate accurate analyte measurements, and are promising for further development of fiber-coupled, miniaturised in vivo sensors based on mid-infrared spectroscopy.
Collapse
|
40
|
Quartz-Enhanced Photothermal-Acoustic Spectroscopy for Trace Gas Analysis. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9194021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A crystal quartz tuning fork (QTF) was used as a detector to collect and amplify laser-induced photoacoustic and photothermal waves simultaneously for trace chemical analysis. A wavelength modulation technique was applied to the proposed quartz-enhanced photothermal-acoustic spectroscopy (QEPTAS) to improve the detection signal-to-noise ratio. The QTF detector was exposed to the illumination of a near-infrared distributed feedback laser at distances of 1 m and 2 m to evaluate the QEPTAS sensor performance. The QEPTAS sensor performance was determined by detecting water vapor in ambient air using a near-infrared distributed feedback laser with a power of ~10 mW and a wavelength of 1.39 μm. With an optimized modulation depth of 0.47 cm−1, the normalized noise equivalent absorption (NNEA) coefficients of 8.4 × 10−7 W·cm−1·Hz−1/2 and 3.7 × 10−6 W·cm−1·Hz−1/2 were achieved for a distance of 1 m and 2 m, respectively. The developed QEPTAS technique reduces the requirements for laser beam quality, resulting in a simple but robust sensor structure and demonstrates the ability of remote sensing of gas concentrations.
Collapse
|
41
|
Guo X, Zhang D, Shojaei-Asanjan K, Sivagurunathan K, Melnikov A, Song P, Mandelis A. Noninvasive in vivo glucose detection in human finger interstitial fluid using wavelength-modulated differential photothermal radiometry. JOURNAL OF BIOPHOTONICS 2019; 12:e201800441. [PMID: 30809960 DOI: 10.1002/jbio.201800441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
We present a noninvasive and noncontacting biosensor using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR) to monitor blood glucose concentration (BGC) through interstitial fluid (ISF) probing in human middle fingers. WM-DPTR works in the interference-free mid-infrared range with differential wavelengths at the peak and baseline of the fundamental glucose molecule absorption band, giving rise to high glucose sensitivity and specificity. In vivo WM-DPTR measurements and simultaneous finger pricking BGC reference measurements were performed on diabetic and nondiabetic volunteers during oral glucose tolerance testing. The measurement results demonstrated high resolution and large dynamic range (~80 deg) change in phase signal in the normal-to-hyperglycemia BGC range (5 mmol/L to higher than 33.2 mmol/L), which were supported by negative control measurements. The immunity to temperature variation of WM-DPTR yields precise and accurate noninvasive glucose measurements in the ISF.
Collapse
Affiliation(s)
- Xinxin Guo
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Di Zhang
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Khashayar Shojaei-Asanjan
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Koneswaran Sivagurunathan
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Alexander Melnikov
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Peng Song
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| | - Andreas Mandelis
- Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Villena Gonzales W, Mobashsher AT, Abbosh A. The Progress of Glucose Monitoring-A Review of Invasive to Minimally and Non-Invasive Techniques, Devices and Sensors. SENSORS (BASEL, SWITZERLAND) 2019; 19:E800. [PMID: 30781431 PMCID: PMC6412701 DOI: 10.3390/s19040800] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Current glucose monitoring methods for the ever-increasing number of diabetic people around the world are invasive, painful, time-consuming, and a constant burden for the household budget. The non-invasive glucose monitoring technology overcomes these limitations, for which this topic is significantly being researched and represents an exciting and highly sought after market for many companies. This review aims to offer an up-to-date report on the leading technologies for non-invasive (NI) and minimally-invasive (MI) glucose monitoring sensors, devices currently available in the market, regulatory framework for accuracy assessment, new approaches currently under study by representative groups and developers, and algorithm types for signal enhancement and value prediction. The review also discusses the future trend of glucose detection by analyzing the usage of the different bands in the electromagnetic spectrum. The review concludes that the adoption and use of new technologies for glucose detection is unavoidable and closer to become a reality.
Collapse
Affiliation(s)
- Wilbert Villena Gonzales
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia.
| | - Ahmed Toaha Mobashsher
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia.
| | - Amin Abbosh
- School of Information Technology and Electrical Engineering, The University of Queensland, St Lucia, Brisbane 4072, Australia.
| |
Collapse
|
43
|
Charles RKJ, Mary AB, Jenova R, Majid M. VLSI design of intelligent, Self-monitored and managed, Strip-free, Non-invasive device for Diabetes mellitus patients to improve Glycemic control using IoT. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.procs.2019.12.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Tao W, Lu Z, He Q, Lv P, Wang Q, Zhao H. Research on the Temperature Characteristics of the Photoacoustic Sensor of Glucose Solution. SENSORS 2018; 18:s18124323. [PMID: 30544558 PMCID: PMC6308447 DOI: 10.3390/s18124323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
In order to weaken the influence of temperature on photoacoustic (PA) measurements and compensate PA signals with a proposed theoretical model, the relationship of PA signal amplitude with temperature, under the condition of different glucose concentrations and different light intensities, was studied in this paper. First, the theoretical model was derived from the theory of the PA effect. Then, the temperature characteristics of the PA signals were investigated, based on the analyses of the temperature-dependent Grüneisen parameter in glucose solution. Next, the concept of a PA temperature coefficient was proposed in this paper. The result of the theoretical analysis shows that this coefficient is linear to light intensity and irrelevant to the concentration of glucose solution. Furthermore, a new concept of a PA temperature coefficient of unit light intensity was proposed in this paper. This coefficient is approximately constant, with different light intensities and solution concentrations, which is similar to the thermal expansion coefficient. After calculation, the PA temperature coefficient by the unit light intensity of glucose solution is about 0.936 bar/K. Finally, relevant experiments were carried out to verify the theoretical analysis, and the PA temperature coefficient of the unit light intensity of glucose solution is about 0.04/°C. This method can also be used in sensors measuring concentrations in other aqueous solutions.
Collapse
Affiliation(s)
- Wei Tao
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Zhiqian Lu
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Qiaozhi He
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Pengfei Lv
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Qian Wang
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| | - Hui Zhao
- Department of Instrument Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
45
|
Liu S, Zhang R, Zheng Z, Zheng Y. Electromagnetic⁻Acoustic Sensing for Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3203. [PMID: 30248969 PMCID: PMC6210000 DOI: 10.3390/s18103203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022]
Abstract
This paper reviews the theories and applications of electromagnetic⁻acoustic (EMA) techniques (covering light-induced photoacoustic, microwave-induced thermoacoustic, magnetic-modulated thermoacoustic, and X-ray-induced thermoacoustic) belonging to the more general area of electromagnetic (EM) hybrid techniques. The theories cover excitation of high-power EM field (laser, microwave, magnetic field, and X-ray) and subsequent acoustic wave generation. The applications of EMA methods include structural imaging, blood flowmetry, thermometry, dosimetry for radiation therapy, hemoglobin oxygen saturation (SO₂) sensing, fingerprint imaging and sensing, glucose sensing, pH sensing, etc. Several other EM-related acoustic methods, including magnetoacoustic, magnetomotive ultrasound, and magnetomotive photoacoustic are also described. It is believed that EMA has great potential in both pre-clinical research and medical practice.
Collapse
Affiliation(s)
- Siyu Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Ruochong Zhang
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
46
|
Sim JY, Ahn CG, Jeong EJ, Kim BK. In vivo Microscopic Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring Invulnerable to Skin Secretion Products. Sci Rep 2018; 8:1059. [PMID: 29348411 PMCID: PMC5773698 DOI: 10.1038/s41598-018-19340-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Photoacoustic spectroscopy has been shown to be a promising tool for non-invasive blood glucose monitoring. However, the repeatability of such a method is susceptible to changes in skin condition, which is dependent on hand washing and drying due to the high absorption of infrared excitation light to the skin secretion products or water. In this paper, we present a method to meet the challenges of mid-infrared photoacoustic spectroscopy for non-invasive glucose monitoring. By obtaining the microscopic spatial information of skin during the spectroscopy measurement, the skin region where the infrared spectra is insensitive to skin condition can be locally selected, which enables reliable prediction of the blood glucose level from the photoacoustic spectroscopy signals. Our raster-scan imaging showed that the skin condition for in vivo spectroscopic glucose monitoring had significant inhomogeneities and large variability in the probing area where the signal was acquired. However, the selective localization of the probing led to a reduction in the effects of variability due to the skin secretion product. Looking forward, this technology has broader applications not only in continuous glucose monitoring for diabetic patient care, but in forensic science, the diagnosis of malfunctioning sweat pores, and the discrimination of tumors extracted via biopsy.
Collapse
Affiliation(s)
- Joo Yong Sim
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Korea
| | - Chang-Geun Ahn
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Korea
| | - Eun-Ju Jeong
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Korea
| | - Bong Kyu Kim
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon, 34129, Korea.
| |
Collapse
|
47
|
Zheng H, Lou M, Dong L, Wu H, Ye W, Yin X, Kim CS, Kim M, Bewley WW, Merritt CD, Canedy CL, Warren MV, Vurgaftman I, Meyer JR, Tittel FK. Compact photoacoustic module for methane detection incorporating interband cascade light emitting device. OPTICS EXPRESS 2017; 25:16761-16770. [PMID: 28789177 DOI: 10.1364/oe.25.016761] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
A photoacoustic module (PAM) for methane detection was developed by combining a novel 3.2 μm interband cascade light emitting device (ICLED) with a compact differential photoacoustic cell. The ICLED with a 22-stage interband cascade active core emitted a collimated power of ~700 μW. A concave Al-coat reflector was positioned adjacent to the photoacoustic cell to enhance the gas absorption length. Assembly of the ICLED and reflector with the photoacoustic cell resulted in a robust and portable PAM without any moving parts. The PAM performance was evaluated in terms of operating pressure, sensitivity and linearity. A 1σ detection limit of 3.6 ppmv was achieved with a 1-s integration time.
Collapse
|
48
|
Sim JY, Ahn CG, Huh C, Chung KH, Jeong EJ, Kim BK. Synergetic Resonance Matching of a Microphone and a Photoacoustic Cell. SENSORS 2017; 17:s17040804. [PMID: 28397761 PMCID: PMC5422165 DOI: 10.3390/s17040804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 02/06/2023]
Abstract
We propose an approach to match the resonant characteristics of a photoacoustic cell with that of a microphone in order to enhance the signal-to-noise ratio in the photoacoustic sensor system. The synergetic resonance matching of a photoacoustic cell and a microphone was achieved by observing that photoacoustic cell resonance is merged with microphone resonance, in addition to conducting numerical and analytical simulations. Using this approach, we show that the signal-to-noise ratio was increased 3.5-fold from the optimized to non-optimized cell in the photoacoustic spectroscopy system. The present work is expected to have a broad impact on a number of applications, from improving weak photoacoustic signals in photoacoustic spectroscopy to ameliorating various sensors that use acoustic resonant filters.
Collapse
Affiliation(s)
- Joo Yong Sim
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| | - Chang-Geun Ahn
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| | - Chul Huh
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| | - Kwang Hyo Chung
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| | - Eun-Ju Jeong
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| | - Bong Kyu Kim
- Bio-Medical IT Convergence Research Department, Electronics and Telecommunications Research Institute, Daejeon 34129, Korea.
| |
Collapse
|
49
|
Schwaighofer A, Brandstetter M, Lendl B. Quantum cascade lasers (QCLs) in biomedical spectroscopy. Chem Soc Rev 2017; 46:5903-5924. [DOI: 10.1039/c7cs00403f] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review focuses on the recent applications of QCLs in mid-IR spectroscopy of clinically relevant samples.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| | | | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics
- Vienna University of Technology
- 1060 Vienna
- Austria
| |
Collapse
|