1
|
Wang L, Tolok G, Fu Y, Xu L, Li L, Gao H, Zhou Y. Application and Research Progress of Laser-Induced Breakdown Spectroscopy in Agricultural Product Inspection. ACS OMEGA 2024; 9:24203-24218. [PMID: 39363884 PMCID: PMC11448804 DOI: 10.1021/acsomega.4c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 10/05/2024]
Abstract
The quality and safety of agricultural products are of paramount importance in ensuring the health of the food supply chain. Additionally, the composition and trace elements in agricultural products significantly influence their quality and nutritional value. Therefore, the need for rapid and accurate analysis techniques for agricultural product composition is particularly crucial. In the current landscape of evolving compositional analysis technologies, Laser-Induced Breakdown Spectroscopy (LIBS) technology is emerging as a promising analytical tool with broad applications in agricultural product testing. Its characteristics of being rapid, real-time, and capable of simultaneous detection of multiple elements provide an efficient and reliable means for assessing the quality, monitoring safety, and tracing the origin of agricultural products. This technology is expected to play a significant role in controlling and managing the agricultural industry chain and can offer consumers safer and healthier agricultural products. This paper provides an overview of the research status and recent developments of LIBS technology in agricultural product testing applications in recent years. Based on the current research landscape, challenges and opportunities of applying LIBS technology in fields such as agricultural product quality and safety assessment, soil analysis, assessment of crop nutrition, detection of plant diseases, and identification of agricultural product varieties have been evaluated. Moreover, recommendations for further expanding the application of LIBS technology in the agricultural sector are proposed.
Collapse
Affiliation(s)
- Li Wang
- Faculty
of Mathematics and Physics, Bengbu University, Bengbu 233030, China
- Faculty
of Food Technology and Quality Management of Agricultural Products, National University of Life and Environmental Sciences
of Ukraine, Kyiv 03041, Ukraine
| | - Galina Tolok
- Faculty
of Food Technology and Quality Management of Agricultural Products, National University of Life and Environmental Sciences
of Ukraine, Kyiv 03041, Ukraine
| | - Yuanxia Fu
- Faculty
of Food Technology and Quality Management of Agricultural Products, National University of Life and Environmental Sciences
of Ukraine, Kyiv 03041, Ukraine
| | - Li Xu
- Faculty
of Food Technology and Quality Management of Agricultural Products, National University of Life and Environmental Sciences
of Ukraine, Kyiv 03041, Ukraine
| | - Li Li
- Faculty
of Information Technology, National University
of Life and Environmental Sciences of Ukraine, Kyiv 03041, Ukraine
| | - Hui Gao
- Faculty
of Information Technology, National University
of Life and Environmental Sciences of Ukraine, Kyiv 03041, Ukraine
| | - Yu Zhou
- Faculty
of Mathematics and Physics, Bengbu University, Bengbu 233030, China
| |
Collapse
|
2
|
Gardette V, Motto-Ros V, Alvarez-Llamas C, Sancey L, Duponchel L, Busser B. Laser-Induced Breakdown Spectroscopy Imaging for Material and Biomedical Applications: Recent Advances and Future Perspectives. Anal Chem 2023; 95:49-69. [PMID: 36625118 DOI: 10.1021/acs.analchem.2c04910] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Vincent Gardette
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Vincent Motto-Ros
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - César Alvarez-Llamas
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Lucie Sancey
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France
| | - Ludovic Duponchel
- Univ. Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour Les Interactions, La Réactivité et L'Environnement, Lille F-59000, France
| | - Benoit Busser
- Univ. Grenoble Alpes, Institute for Advanced Biosciences, Inserm U 1209/CNRS 5309, 38000 Grenoble, France.,Department of Laboratory Medicine, Grenoble Alpes University Hospital, 38000 Grenoble, France.,Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
3
|
Francischini DS, Arruda MA. When a picture is worth a thousand words: Molecular and elemental imaging applied to environmental analysis – A review. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Modlitbová P, Střítežská S, Hlaváček A, Prochazka D, Pořízka P, Kaiser J. Laser-induced breakdown spectroscopy as a straightforward bioimaging tool for plant biologists; the case study for assessment of photon-upconversion nanoparticles in Brassica oleracea L. plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112113. [PMID: 33690006 DOI: 10.1016/j.ecoenv.2021.112113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/17/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The main purpose of this work is to thoroughly describe the implementation protocol of laser-induced breakdown spectroscopy (LIBS) method in the plant analysis. Numerous feasibility studies and recent progress in instrumentation and trends in chemical analysis make LIBS an established method in plant bioimaging. In this work, we present an easy and straightforward phytotoxicity case study with a focus on LIBS method. We intend to demonstrate in detail how to manipulate with plants after exposures and how to prepare them for analyses. Moreover, we aim to achieve 2D maps of spatial element distribution with a good resolution without any loss of sensitivity. The benefits of rapid, low-cost bioimaging are highlighted. In this study, cabbage (Brassica oleracea L.) was treated with an aqueous dispersion of photon-upconversion nanoparticles (NaYF4 doped with Yb3+ and Tm3+ coated with carboxylated silica shell) in a hydroponic short-term toxicity test. After a 72-hour plant exposure, several macroscopic toxicity end-points were monitored. The translocation of Y, Yb, and Tm across the whole plant was set by employing LIBS with a lateral resolution 100 µm. The LIBS maps of rare-earth elements in B.oleracea plant grown with 50 μg/mL nanoparticle-treated and ion-treated exposures showed the root as the main storage, while the transfer via stem into leaves was minimal. On the contrary, the LIBS maps of plants exposed to the 500 μg/mL nanoparticle-treated and ion-treated uncover slightly different trends, nanoparticles as well as ions were transferred through the stem into leaves. However, the main storage organ was a root as well.
Collapse
Affiliation(s)
- Pavlína Modlitbová
- Central European Institute of Technology (CEITEC) Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Sára Střítežská
- Central European Institute of Technology (CEITEC) Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic
| | - Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, 602 00 Brno, Czech Republic
| | - David Prochazka
- Central European Institute of Technology (CEITEC) Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Pavel Pořízka
- Central European Institute of Technology (CEITEC) Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic.
| | - Jozef Kaiser
- Central European Institute of Technology (CEITEC) Brno University of Technology, Purkyňova 123, 612 00 Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| |
Collapse
|
5
|
Limbeck A, Brunnbauer L, Lohninger H, Pořízka P, Modlitbová P, Kaiser J, Janovszky P, Kéri A, Galbács G. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal Chim Acta 2021; 1147:72-98. [DOI: 10.1016/j.aca.2020.12.054] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
|
6
|
Laser-induced breakdown spectroscopy as a promising tool in the elemental bioimaging of plant tissues. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115729] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Peng J, He Y, Zhao Z, Jiang J, Zhou F, Liu F, Shen T. Fast visualization of distribution of chromium in rice leaves by re-heating dual-pulse laser-induced breakdown spectroscopy and chemometric methods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:1125-1132. [PMID: 31252110 DOI: 10.1016/j.envpol.2019.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Knowledge of distribution of toxic metal in crop is essential for studying toxic metal uptake, transportation and bioaccumulation, and it is important for environmental pollution monitoring. In this study, the macro spatial distribution of chromium in rice leaves was visualized by re-heating dual-pulse laser-induced breakdown spectroscopy (DPLIBS) and chemometric methods. After the optimization of two important parameters (delay time and energy ratio) in DPLIBS, chromium prediction model was established based on global spectra. The global model achieved acceptable performance while slight overfitting for model was found because of numerous irrelevant variables. Feature variables including emissions from chromium and other elements were successfully selected by the values of regression coefficient in partial least square regression model. Best performance was achieved by using the feature variables and support vector machine, with correlation coefficient of prediction of 0.959, root mean square error of prediction of 13.4 mg/kg and residual predictive deviation of 3.6. Finally, the distribution of chromium in rice leaves was visualized with the best prediction model. The distribution image showed that chromium distributed approximately symmetrically along the vein and was likely to be accumulated in leaf apex. The preliminary results provide an approach for investigating the macro spatial distribution of elements in crops, which is important for environmental protection and food safety.
Collapse
Affiliation(s)
- Jiyu Peng
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China; College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yong He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Zhangfeng Zhao
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Jiandong Jiang
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, 310023, China
| | - Fei Zhou
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China.
| | - Tingting Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Singh VK, Tripathi DK, Mao X, Russo RE, Zorba V. Elemental Mapping of Lithium Diffusion in Doped Plant Leaves Using Laser-Induced Breakdown Spectroscopy (LIBS). APPLIED SPECTROSCOPY 2019; 73:387-394. [PMID: 30700104 DOI: 10.1177/0003702819830394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mapping of element distributions and diffusion processes in plant tissue has great significance for understanding the systematic uptake, transport, and accumulation of nutrients and harmful elements in plants, and for studying the interaction between plants and the environment. In this work, we used laser-induced breakdown spectroscopy (LIBS) to study the elemental accumulation of Li and its diffusion in plant leaves. The spatially resolved information that LIBS offers, combined with its high sensitivity to light elements make this technology highly advantageous for the analysis of Li. Laser-induced breakdown spectroscopy mapping of Li-doped leaf samples is used to directly visualize the diffusion of Li in the plant leaf and study its distribution as a function of LiCl solution exposure time. Our findings demonstrate that diffusion of Li in plant leaves occurs though their veins (i.e., bundles of vascular tissue) and that Li concentration decreases as we move away from the LiCl exposure site. These results underline the importance of veins in transportation of toxic elements in plants, and mapping of their distribution can be instrumental in the development of possible remediation approaches for managing Li toxicity.
Collapse
Affiliation(s)
- Vivek K Singh
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- 2 School of Physics, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | | | - Xianglei Mao
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Vassilia Zorba
- 1 Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|