1
|
Wariishi T, Kataoka Y, Nakamura T, Kasahara Y, Kuroda M, Obika S, Kuwahara M. Lantern-type G-quadruplex fluorescent sensors for detecting divalent metal ions. Anal Biochem 2024; 690:115525. [PMID: 38554995 DOI: 10.1016/j.ab.2024.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Three thioflavin T (ThT) derivatives, namely ThT/ethylenediaminetetraacetic acid conjugates (E1T, E2T, and E1T1P), were designed and synthesized as sensing components for divalent metal ion detection. Furthermore, these ThT derivatives were used to design lantern-type G-quadruplex (G4) fluorescent sensors. The fluorescence intensities of the ThT derivatives decreased by 1.2- to 5.6-folds in the presence of Ni2+ and Cu2+, respectively, regardless of the topology of the utilized G4. Conversely, when Mn2+ and Zn2+ coexisted in antiparallel G4, the fluorescence intensities of E2T increased to approximately 3.3- and 2.3-folds, respectively, depending on the concentration of the divalent metal ion, allowing for quantitative analyses. The Job plot analysis revealed that the binding ratio of G4 and E2T changed from 2:1 to 1:2 with the increasing concentration of the divalent metal ions. These results indicated that the basic principle of such a lantern-type G4 sensor can be applied to the detection of divalent metal ions and other types of targets, such as proteins, and small molecules via ThT derivatization.
Collapse
Affiliation(s)
- Tomoko Wariishi
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuka Kataoka
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Tomoaki Nakamura
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masataka Kuroda
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan
| | - Satoshi Obika
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki City, Osaka, 567-0085, Japan; Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masayasu Kuwahara
- Graduate School of Integrated Basic Sciences, Nihon University, 3-25-40 Sakurajosui, Setagaya-ku, Tokyo, 156-8550, Japan.
| |
Collapse
|
2
|
Xu Y, Liu Y, Li X, Cai Y, Gao Z, Qiu J. Development of a split G-quadruplex and DAPI-based fluorescent probe for Hg(II) and Pb(II) ions detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 16:83-90. [PMID: 38078449 DOI: 10.1039/d3ay01839c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A novel thymine- and guanine-rich oligonucleotide (ODN-7) was engineered explicitly for the detection of Hg(II) and Pb(II) by a single intercalated dye 4',6-diamidinyl-2-phenylindole (DAPI). Upon the introduction of Hg(II), a rapid formation of T-Hg(II)-T base pairs takes place, triggering the assembly of a split G-quadruplex structure, resulting in a strong fluorescence signal due to DAPI intercalating into the T-Hg(II)-T mismatch. The introduction of Pb(II) initiates an interaction with the split G-quadruplex, causing a significant conformational change in its structure. Consequently, the altered split G-quadruplex structure fails to facilitate the insertion of DAPI into the T-Hg(II)-T complexes, leading to fluorescence quenching. This strategy offers a straightforward means of detecting Hg(II) and Pb(II). Leveraging the split G-quadruplex, the ODN-7 sensor enables the detection limits (3σ) for Hg(II) and Pb(II) to reach an impressive low of 0.39 nM and 4.98 nM, respectively. It exhibited a favorable linear range of 0.39-900 nM for Hg(II) detection (R2 = 0.9993) and 4.98 nM-5 μM for Pb(II) determination (R2 = 0.9953), respectively. Furthermore, the proposed sensor had excellent selectivity for detecting Hg(II) and Pb(II). It was used in milk samples containing mixed Hg(II) and Pb(II) solutions, yielding recovery rates of 99.3-103.8% for Hg(II) detection and 100.1-104.1% for Pb(II) detection.
Collapse
Affiliation(s)
- Youyang Xu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Yuxin Liu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Xiangxiang Li
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Yule Cai
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Zihan Gao
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| | - Jieqiong Qiu
- Zhejiang Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
3
|
Mathivanan J, Liu H, Gan J, Chandrasekaran AR, Sheng J. Fluorescent Aptaswitch for Detection of Lead Ions. ACS APPLIED BIO MATERIALS 2022; 5:5089-5093. [PMID: 35652916 DOI: 10.1021/acsabm.2c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Detection of metal ions has essential roles in biology, food industry, and environmental sciences. In this work, we developed a Pb2+ detection strategy based on a fluorophore-tagged Pb2+-binding aptamer. The DNA aptamer changes its conformation on binding Pb2+, switching from an "off" state (low fluorescence) to an "on" state (high fluorescence). This method provides a quantitative readout with a detection limit of 468 nM, is highly specific to Pb2+ when tested against other metal ions, and is functional in complex biofluids. Such metal sensing DNA aptamers could be coupled with other biomolecules for sense-and-actuate mechanisms in biomedical and environmental applications.
Collapse
Affiliation(s)
- Johnsi Mathivanan
- Department of Chemistry, University of Albany, State University of New York, Albany, New York 12222, United States.,The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| | - Hehua Liu
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Jianhua Gan
- Shanghai Public Health Clinical Center, State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Arun Richard Chandrasekaran
- The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| | - Jia Sheng
- Department of Chemistry, University of Albany, State University of New York, Albany, New York 12222, United States.,The RNA Institute, University of Albany, State University of New York, Albany, New York 12222, United States
| |
Collapse
|
4
|
Zhang BY, Shi L, Ma XY, Liu L, Fu Y, Zhang XF. Advances in the Functional Nucleic Acid Biosensors for Detection of Lead Ions. Crit Rev Anal Chem 2021; 53:309-325. [PMID: 34304647 DOI: 10.1080/10408347.2021.1951648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lead ions (Pb2+) are destructive to the natural environment and public health, so the efficient detection of Pb2+ is particularly important. Although the instrumental analysis methods have high accuracy, they require high cost and precise operation, which limits their wide application. Therefore, many strategies have been extensively studied for detecting Pb2+ by biosensors. Functional nucleic acids have become an efficient tool in this field. This review focuses on the recent biosensors of detecting Pb2+ based on functional nucleic acids from 2010 to 2020, in which DNAzyme, DNA G-quadruplex and aptamer will be introduced. The biosensors are divided into three categories that colorimetric, fluorometric and electrochemical biosensors according to the different reported signals. The action mechanism and detection effect of each biosensor are explained. Finally, the present situation of nucleic acid biosensor for the detection of Pb2+ is summarized and the future research direction is prospected.
Collapse
Affiliation(s)
- Bu-Yue Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiao-Ying Ma
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiu-Feng Zhang
- College of Chemical Engineering, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
5
|
Zhang J, Ma X, Chen W, Bai Y, Xue P, Chen K, Chen W, Bian L. Bifunctional single-labelled oligonucleotide probe for detection of trace Ag(I) and Pb(II) based on cytosine-Ag(I)-cytosine mismatches and G-quadruplex. Anal Chim Acta 2021; 1151:338258. [PMID: 33608073 DOI: 10.1016/j.aca.2021.338258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/23/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
A novel bifunctional oligonucleotide (OND) probe with single fluorescent group HEX labelled at 5'-end was designed for detecting trace Ag(I) and Pb(II) in real samples. In the presence of Ag(I), the hairpin structure originating from Ag(I) induced cytosine-Ag(I)-cytosine mismatches causes the proximity of the HEX to the consecutive guanine bases (G)4 at 3'-terminal, resulting in the fluorescence quenching of the HEX. While in the presence of Pb(II), the G-quadruplex structure originating from two G-quartet planes by the intramolecular hydrogen bond with Pb(II) also causes the HEX approaching the (G)4 terminal and consequently the fluorescence quenching. The results showed the quantitative detection of trace Ag(I) and Pb(II) both in the linear response ranges of 1.0-20.0 × 10-9 mol L-1 with no visible interferences of other 11 metal ions observed. And the detection limits were 82 × 10-12 mol L-1 for Ag(I), 92 × 10-12 mol L-1 for Pb(II), respectively. The fluorescence quenching mechanism of the (G)4 to HEX was verified to be the photoinduced electron transfer in the aspect of thermodynamics. This method provided a feasible application for sensitive and selective detection of Pb(II) and Ag(I) in water and Chinese traditional herbs with convenient operation.
Collapse
Affiliation(s)
- Jiaxin Zhang
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Xian Ma
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wenhua Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Yifan Bai
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Pengli Xue
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Kehan Chen
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wang Chen
- College of Life Science and Technology, Shaanxi University of Technology, Hanzhong, 723001, Shaanxi, China
| | - Liujiao Bian
- College of Life Science, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
6
|
Yan Y, Ma C, Tang Z, Chen M, Zhao H. A novel fluorescent assay based on DNAzyme-assisted detection of prostate specific antigen for signal amplification. Anal Chim Acta 2020; 1104:172-179. [PMID: 32106949 DOI: 10.1016/j.aca.2020.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/23/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022]
Abstract
Prostate specific antigen (PSA) is one of the most common biomarkers for the management of prostate cancer. However, it still remains urgent to develop highly sensitive, cost-effective and selective strategies for PSA assay. In this paper, we developed a low-cost, highly sensitive and specific analytical strategy for the detection of PSA by using a fluorescence sensor based on Pb2+-dependent DNAzyme. We designed a DNA sequence called cmMB with a hairpin structure, containing PSA-specific aptamers and Pb2+-dependent DNAzyme chains. Also, a fluorophore-labelled DNA sequence called Sub-FAM, which contains a cleavage site of Pb2+-dependent DNAzyme and serves as substrate, is also designed for the signal generation. In the presence of PSA, interaction between aptamer and PSA blocks the hairpin structure of cmMB, resulting in the formation of Pb2+-dependent DNAzyme with Pb2+. Then, Pb2+-dependent DNAzyme can cleavage Sub-FAM and produce a high fluorescence. In the absence of PSA, since Sub-FAM remains to be ssDNA and can be absorbed by GO, only low fluorescence can be detected. Under optimal experimental conditions, a good linear relationship in the range of 1-100 pg mL-1 was exhibited, with a limit of detection (LOD) of 0.76 pg mL-1. In addition, the proposed method has potential value in the diagnosis and monitoring of prostate cancer because of its good selectivity and practical application in biological samples.
Collapse
Affiliation(s)
- Ying Yan
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha, 410013, China.
| | - Zhenwei Tang
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Mingjian Chen
- School of Life Sciences, Central South University, Changsha, 410013, China
| | - Han Zhao
- School of Life Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
7
|
Sun C, Ou X, Cheng Y, Zhai T, Liu B, Lou X, Xia F. Coordination-induced structural changes of DNA-based optical and electrochemical sensors for metal ions detection. Dalton Trans 2019; 48:5879-5891. [PMID: 30681098 DOI: 10.1039/c8dt04733b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metal ions play a critical role in human health and abnormal levels are closely related to various diseases. Therefore, the detection of metal ions with high selectivity, sensitivity and accuracy is particularly important. This article highlights and comments on the coordination-induced structural changes of DNA-based optical, electrochemical and optical-electrochemical-combined sensors for metal ions detection. Challenges and potential solutions of DNA-based sensors for the simultaneous detection of multiple metal ions are also discussed for further development and exploitation.
Collapse
Affiliation(s)
- Chunli Sun
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering; National Engineering Research Center for Nanomedicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | | | | | | | | | | | | |
Collapse
|
8
|
Kumar S, Jain S, Dilbaghi N, Ahluwalia AS, Hassan AA, Kim KH. Advanced Selection Methodologies for DNAzymes in Sensing and Healthcare Applications. Trends Biochem Sci 2018; 44:190-213. [PMID: 30559045 DOI: 10.1016/j.tibs.2018.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/01/2018] [Accepted: 11/01/2018] [Indexed: 02/07/2023]
Abstract
DNAzymes have been widely explored owing to their excellent catalytic activity in a broad range of applications, notably in sensing and biomedical devices. These newly discovered applications have built high hopes for designing novel catalytic DNAzymes. However, the selection of efficient DNAzymes is a challenging process but one that is of crucial importance. Initially, systemic evolution of ligands by exponential enrichment (SELEX) was a labor-intensive and time-consuming process, but recent advances have accelerated the automated generation of DNAzyme molecules. This review summarizes recent advances in SELEX that improve the affinity and specificity of DNAzymes. The thriving generation of new DNAzymes is expected to open the door to several healthcare applications. Therefore, a significant portion of this review is dedicated to various biological applications of DNAzymes, such as sensing, therapeutics, and nanodevices. In addition, discussion is further extended to the barriers encountered for the real-life application of these DNAzymes to provide a foundation for future research.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India; Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA.
| | - Shikha Jain
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar-Haryana, 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, College of Engineering, University of Nebraska at Lincoln, PO Box 886105, Lincoln, NE 68588-6105, USA
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
9
|
Yeasmin Khusbu F, Zhou X, Chen H, Ma C, Wang K. Thioflavin T as a fluorescence probe for biosensing applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.09.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Fluorescence and Naked-Eye Detection of Pb2+ in Drinking Water Using a Low-Cost Ionophore Based Sensing Scheme. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6040051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drinking water contamination of lead from various environmental sources, leaching consumer products, and intrinsic water-pipe infrastructure is still today a matter of great concern. Therefore, new highly sensitive and convenient Pb2+ measurement schemes are necessary, especially for in-situ measurements at a low cost. Within this work dye/ionophore/Pb2+ co-extraction and effective water phase de-colorization was utilized for highly sensitive lead measurements and sub-ppb naked-eye detection. A low-cost ionophore Benzo-18-Crown-6-ether was used, and a simple test-tube mix and separate procedure was developed. Instrumental detection limits were in the low ppt region (LOD = 3, LOQ = 10), and naked-eye detection was 500 ppt. Note, however, that this sensing scheme still has improvement potential as concentrations of fluorophore and ionophore were not optimized. Artificial tap-water samples, leached by a standardized method, demonstrated drinking water application. Implications for this method are convenient in-situ lead ion measurements.
Collapse
|
11
|
Yu Z, Zhou W, Ma G, Li Y, Fan L, Li X, Lu Y. Insights into the Competition between K+ and Pb2+ Binding to a G-Quadruplex and Discovery of a Novel K+–Pb2+–Quadruplex Intermediate. J Phys Chem B 2018; 122:9382-9388. [DOI: 10.1021/acs.jpcb.8b08161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ze Yu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ge Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yunchao Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Louzhen Fan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiaohong Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yi Lu
- Department of Chemistry, Department of Materials Science and Engineering, University of Illinois at Urbana and Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
12
|
Sensitive and label-free electrochemical lead ion biosensor based on a DNAzyme triggered G-quadruplex/hemin conformation. Biosens Bioelectron 2018; 115:91-96. [DOI: 10.1016/j.bios.2018.04.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 01/01/2023]
|
13
|
Zhu Y, Li W, Tan S, Chen T. Label-Free and Simple G-quadruplex-based Turn-Off Fluorescence Assay for the Detection of Kanamycin. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1387136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Yuqing Zhu
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| | - Wei Li
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| | - Shuzhen Tan
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| | - Tianxiao Chen
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|