1
|
Wang M, Luo Y, Yang Q, Chen J, Feng M, Tang Y, Xiao W, Tang Z, Zheng Y, Li L. Optimization of Metal-Based Nanoparticle Composite Formulations and Their Application in Wound Dressings. Int J Nanomedicine 2025; 20:2813-2846. [PMID: 40066324 PMCID: PMC11892508 DOI: 10.2147/ijn.s508036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/21/2025] [Indexed: 05/13/2025] Open
Abstract
Metal-based nanoparticles (MNPs) have great potential for applications in wound healing and tissue engineering, and due to their unique structures, high bioactivities, and excellent designability characteristics, an increasing number of studies have been devoted to modifying these species to generate novel composites with desirable optical, electrical, and magnetic properties. However, few systematic and detailed reviews have been performed relating to the modification approaches available for MNPs and their resulting composites. In this review, a comprehensive summary is performed regarding the optimized modification formulations of MNPs for application in wound dressings, and the techniques used to prepare composite wound dressings are discussed. In addition, the safety profiles of the novel nanocomposite formulations and the limitations of the reported systems are evaluated. More importantly, a number of solution strategies are proposed to address these limitations. Overall, this review provides new ideas for the design of MNPs to facilitate their application in the field of skin tissue repair, and also looks into the future direction of MNPs in the biomedical field.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yawen Luo
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Qianwen Yang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Jiawen Chen
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Meixin Feng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yingmei Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wantong Xiao
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Ziyi Tang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Yue Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
2
|
Gholap AD, Rojekar S, Kapare HS, Vishwakarma N, Raikwar S, Garkal A, Mehta TA, Jadhav H, Prajapati MK, Annapure U. Chitosan scaffolds: Expanding horizons in biomedical applications. Carbohydr Polym 2024; 323:121394. [PMID: 37940287 DOI: 10.1016/j.carbpol.2023.121394] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 11/10/2023]
Abstract
Chitosan, a natural polysaccharide from chitin, shows promise as a biomaterial for various biomedical applications due to its biocompatibility, biodegradability, antibacterial activity, and ease of modification. This review overviews "chitosan scaffolds" use in diverse biomedical applications. It emphasizes chitosan's structural and biological properties and explores fabrication methods like gelation, electrospinning, and 3D printing, which influence scaffold architecture and mechanical properties. The review focuses on chitosan scaffolds in tissue engineering and regenerative medicine, highlighting their role in bone, cartilage, skin, nerve, and vascular tissue regeneration, supporting cell adhesion, proliferation, and differentiation. Investigations into incorporating bioactive compounds, growth factors, and nanoparticles for improved therapeutic effects are discussed. The review also examines chitosan scaffolds in drug delivery systems, leveraging their prolonged release capabilities and ability to encapsulate medicines for targeted and controlled drug delivery. Moreover, it explores chitosan's antibacterial activity and potential for wound healing and infection management in biomedical contexts. Lastly, the review discusses challenges and future objectives, emphasizing the need for improved scaffold design, mechanical qualities, and understanding of interactions with host tissues. In summary, chitosan scaffolds hold significant potential in various biological applications, and this review underscores their promising role in advancing biomedical science.
Collapse
Affiliation(s)
- Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Harshad S Kapare
- Department of Pharmaceutics, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 411018, Maharashtra, India
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur 482003, Madhya Pradesh, India
| | - Sarjana Raikwar
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar 470003, Madhya Pradesh, India
| | - Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Tejal A Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, Gujrat, India
| | - Harsh Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM's NMIMS, Shirpur 425405, Maharashtra, India.
| | - Uday Annapure
- Institute of Chemical Technology, Marathwada Campus, Jalna 431203, Maharashtra, India; Department of Food Engineering and Technology, Institute of Chemical Technology (ICT), Mumbai 400 019, Maharashtra, India.
| |
Collapse
|
3
|
Gong Z, Huang Y, Hu X, Zhang J, Chen Q, Chen H. Recent Progress in Electrochemical Nano-Biosensors for Detection of Pesticides and Mycotoxins in Foods. BIOSENSORS 2023; 13:140. [PMID: 36671974 PMCID: PMC9856537 DOI: 10.3390/bios13010140] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pesticide and mycotoxin residues in food are concerning as they are harmful to human health. Traditional methods, such as high-performance liquid chromatography (HPLC) for such detection lack sensitivity and operation convenience. Efficient, accurate detection approaches are needed. With the recent development of nanotechnology, electrochemical biosensors based on nanomaterials have shown solid ability to detect trace pesticides and mycotoxins quickly and accurately. In this review, English articles about electrochemical biosensors in the past 11 years (2011-2022) were collected from PubMed database, and various nanomaterials are discussed, including noble metal nanomaterials, magnetic metal nanoparticles, metal-organic frameworks, carbon nanotubes, as well as graphene and its derivatives. Three main roles of such nanomaterials in the detection process are summarized, including biomolecule immobilization, signal generation, and signal amplification. The detection targets involve two types of pesticides (organophosphorus and carbamate) and six types of mycotoxins (aflatoxin, deoxynivalenol, zearalenone, fumonisin, ochratoxin A, and patulin). Although significant achievements have been made in the evolution of electrochemical nano-biosensors, many challenges remain to be overcome.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Yueming Huang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xianjing Hu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| |
Collapse
|
4
|
Rodrigues EM, Calvert ND, Crawford JC, Liu N, Shuhendler AJ, Hemmer E. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107130. [PMID: 35560500 DOI: 10.1002/smll.202107130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Lanthanide-based upconverting nanoparticles (UCNPs) are largely sought-after for biomedical applications ranging from bioimaging to therapy. A straightforward strategy is proposed here using the naturally sourced polymer phytoglycogen to coencapsulate UCNPs with hydrophobic photosensitizers as an optical imaging platform and light-induced therapeutic agents. The resulting multifunctional sub-micrometer-sized luminescent beads are shown to be cytocompatible as carrier materials, which encourages the assessment of their potential in biomedical applications. The loading of UCNPs of various elemental compositions enables multicolor hyperspectral imaging of the UCNP-loaded beads, endowing these materials with the potential to serve as luminescent tags for multiplexed imaging or simultaneous detection of different moieties under near-infrared (NIR) excitation. Coencapsulation of UCNPs and Rose Bengal opens the door for potential application of these microcarriers for collagen crosslinking. Alternatively, coloading UCNPs with Chlorin e6 enables NIR-light triggered generation of reactive oxygen species. Overall, the developed encapsulation methodology offers a straightforward and noncytotoxic strategy yielding water-dispersible UCNPs while preserving their bright and color-tunable upconversion emission that would allow them to fulfill their potential as multifunctional platforms for biomedical applications.
Collapse
Affiliation(s)
- Emille M Rodrigues
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Nicholas D Calvert
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
- University of Ottawa Heart Institute, University of Ottawa, 501 Smyth Road, Ottawa, Ontario, K1Y 4W7, Canada
| | - Justin C Crawford
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Nan Liu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
| | - Adam J Shuhendler
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
- University of Ottawa Heart Institute, University of Ottawa, 501 Smyth Road, Ottawa, Ontario, K1Y 4W7, Canada
- Centre for Advanced Materials Research (CAMaR), University of Ottawa, 25 Templeton, Ottawa, Ontario, K1N 6X1, Canada
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario, K1N 6N5, Canada
- Centre for Advanced Materials Research (CAMaR), University of Ottawa, 25 Templeton, Ottawa, Ontario, K1N 6X1, Canada
| |
Collapse
|
5
|
Hemoglobin I from Lucina pectinata on Collagen Scaffold: A Prospective Hydrogen Sulfide Scavenger. J CHEM-NY 2022. [DOI: 10.1155/2022/5101712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S), independently of being a toxic gas with a characteristic smell of rotten eggs, is a crucial signaling molecule with significant physiological functions. Given the rapid diffusivity of the gas, it is a challenge to develop robust sensors and biomarkers to quantify free or bound H2S. In addition, there is the need to further develop a robust biosystem to efficiently trap or scavenge H2S from different producing environments. The work presented here uses recombinant met-aquo rHbI (rHbI-H2O) immobilization techniques on collagen to determine its ability to bind H2S due to its high affinity (
M-1). The hemeprotein will function as a scavenger on this scaffold system. UV-Vis absorption and UV-Vis diffuse reflectance (%R) spectroscopy of rHbI-H2O and rHbI-sulfide (rHbI-H2S) complex in solution and collagen scaffold demonstrated that the heme chromophore retains its reactivity and properties. UV-Vis diffuse reflectance measurements, transformed using the Kubelka-Munk function (K-M function), show a linear correlation (
and 0.9916) of rHbI-H2O and rHbI-H2S within concentrations from 1 μM to 35 μM for derivatives. The extraordinary affinity of rHbI-H2O for H2S suggests recombinant met-aquo HbI in a collagen scaffold is an excellent scavenger moiety for hydrogen sulfide. These findings give insight into H2S trapping using the rHbI-H2O-collagen scaffold, where the rHbI-H2S concentration can be determined. Future pathways are to work toward the development of a met-aquo rHbI collagen solution capable of being printed as single drops on polymer, cotton or chromatographic paper. Upon exposure of these matrixes to H2S, the rHbI-H2S complex is formed and its concentration determined using UV-Vis diffuse reflectance technique.
Collapse
|
6
|
Manzo M, Cavazos O, Huang Z, Cai L. Plasmonic and Hybrid Whispering Gallery Mode-Based Biosensors: Literature Review. JMIR BIOMEDICAL ENGINEERING 2021; 6:e17781. [PMID: 38907378 PMCID: PMC11135208 DOI: 10.2196/17781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 10/01/2020] [Accepted: 03/11/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The term "plasmonic" describes the relationship between electromagnetic fields and metallic nanostructures. Plasmon-based sensors have been used innovatively to accomplish different biomedical tasks, including detection of cancer. Plasmonic sensors also have been used in biochip applications and biosensors and have the potential to be implemented as implantable point-of-care devices. Many devices and methods discussed in the literature are based on surface plasmon resonance (SPR) and localized SPR (LSPR). However, the mathematical background can be overwhelming for researchers at times. OBJECTIVE This review article discusses the theory of SPR, simplifying the underlying physics and bypassing many equations of SPR and LSPR. Moreover, we introduce and discuss the hybrid whispering gallery mode (WGM) sensing theory and its applications. METHODS A literature search in ScienceDirect was performed using keywords such as "surface plasmon resonance," "localized plasmon resonance," and "whispering gallery mode/plasmonic." The search results retrieved many articles, among which we selected only those that presented a simple explanation of the SPR phenomena with prominent biomedical examples. RESULTS SPR, LSPR, tilted fiber Bragg grating, and hybrid WGM phenomena were explained and examples on biosensing applications were provided. CONCLUSIONS This minireview presents an overview of biosensor applications in the field of biomedicine and is intended for researchers interested in starting to work in this field. The review presents the fundamental notions of plasmonic sensors and hybrid WGM sensors, thereby allowing one to get familiar with the terminology and underlying complex formulations of linear and nonlinear optics.
Collapse
Affiliation(s)
- Maurizio Manzo
- Photonics Micro-Devices Fabrication Lab, Department of Mechanical Engineering, University of North Texas, Denton, TX, United States
| | - Omar Cavazos
- Photonics Micro-Devices Fabrication Lab, Department of Mechanical Engineering, University of North Texas, Denton, TX, United States
| | - Zhenhua Huang
- Department of Mechanical Engineering, University of North Texas, Denton, TX, United States
| | - Liping Cai
- Department of Mechanical Engineering, University of North Texas, Denton, TX, United States
| |
Collapse
|
7
|
Collagen-based scaffolds: An auspicious tool to support repair, recovery, and regeneration post spinal cord injury. Int J Pharm 2021; 601:120559. [PMID: 33831486 DOI: 10.1016/j.ijpharm.2021.120559] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a perplexing traumatic disease that habitually gives ride to permanent disability, motor, and sensory impairment. Despite the existence of several therapeutic approaches for the injured motor or sensory neurons, they can't promote axonal regeneration. Whether prepared by conventional or rapid prototyping techniques, scaffolds can be applied to refurbish the continuity of the injured site, by creating a suitable environment for tissue repair, axonal regeneration, and vascularization. Collagen is a multi-sourced protein, found in animals skin, tendons, cartilage, bones, and human placenta, in addition to marine biomass. Collagen is highly abundant in the extracellular matrix and is known for its biocompatibility, biodegradability, porous structure, good permeability, low immunogenicity and thus is extensively applied in the pharmaceutical, cosmetic, and food industries as well as the tissue engineering field. Collagen in scaffolds is usually functionalized with different ligands and factors such as, stem cells, embryonic or human cells to augment its binding specificity and activity. The review summarizes the significance of collagen-based scaffolds and their influence on regeneration, repair and recovery of spinal cord injuries.
Collapse
|
8
|
Hristov DR, Pimentel AJ, Ujialele G, Hamad-Schifferli K. The Immunoprobe Aggregation State is Central to Dipstick Immunoassay Performance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34620-34629. [PMID: 32633115 DOI: 10.1021/acsami.0c08628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As new infectious disease outbreaks become more likely, it is important to be able to develop and deploy appropriate testing in time. Paper-based immunoassays are rapid, cheap, and easy to produce at scale and relatively user friendly but often suffer from low selectivity and sensitivity. Understanding the molecular mechanisms of paper immunoassays may help improve and hasten development and therefore production and market availability. Here, we study how the behavior of nanoparticle-antibody immunoprobes in paper dipstick immunoassays is impacted by synthesis strategy and surface chemistry architecture. We conjugate gold nanoparticles to polyclonal anti-immunoglobulin G (IgG) and anti-zika NS1 antibodies by electrostatic adsorption and N-hydroxysuccinimide (NHS) and hydrazide (Hz) chemistries. The immunoprobes were used in paper immunoassays and the effective affinity for the antigen was quantified from the test line intensities, as well as the distribution of the immunoprobes throughout the strips. The results show that nanoparticle colloidal stability, both post synthesis and during antigen binding, is a key factor and affects immunoassay results and performance, often through reduction or loss of signal.
Collapse
|
9
|
Preparation, characterization and stability assessment of keratin and albumin functionalized gold nanoparticles for biomedical applications. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-020-01250-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Ourri B, Vial L. Lost in (Clinical) Translation: Recent Advances in Heparin Neutralization and Monitoring. ACS Chem Biol 2019; 14:2512-2526. [PMID: 31682398 DOI: 10.1021/acschembio.9b00772] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The heparin family, which includes unfractionated heparin, low-molecular heparin, and fondaparinux, is a class of drugs clinically used as intravenous blood thinners. To date, issues related to both the reversal of anticoagulation and the blood level determination of the anticoagulant at the point-of-care remain: while the only U.S. Food and Drug Administration (FDA) approved antidote for heparin displays serious efficacy and safety drawbacks, the current assays for heparin monitoring are indirect measurements subject to their own limitations and variations. Herein, we provide an update on the numerous recent chemical approaches to tackle these issues, from which it is clear that some new antidotes and sensors for heparin certainly have the potential to exceed current clinical standards. This review aims to review a field that requires close collaborations between physicians, biologists, and chemists in order to foster advances toward clinical translation.
Collapse
Affiliation(s)
- Benjamin Ourri
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Laurent Vial
- Univ. Lyon, Univ. Claude Bernard Lyon 1, ICBMS UMR CNRS 5246, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| |
Collapse
|
11
|
Liu Q, Aouidat F, Sacco P, Marsich E, Djaker N, Spadavecchia J. Galectin-1 protein modified gold (III)-PEGylated complex-nanoparticles: Proof of concept of alternative probe in colorimetric glucose detection. Colloids Surf B Biointerfaces 2019; 185:110588. [PMID: 31654887 DOI: 10.1016/j.colsurfb.2019.110588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/20/2019] [Accepted: 10/14/2019] [Indexed: 01/06/2023]
Abstract
Galectins (Gal) are a family of dimeric lectins, composed by two galactoside-binding sites implicated in the regulation of cancer progression and immune responses. In this study, we report for the first time the synthesis and the physical-chemical characterization of galectin-1-complex-gold COOH-terminated polyethlenglicole (PEG)-coated NPs (Gal-1 IN PEG-AuNPs) and their ability to recognize glucose in an aqueous solution with a concentration varying from 10 mM to 100 pM. The chemical protocol consistsof three steps: (i) complexation between galectin-1Gal-1 and tetrachloroauric acid (HAuCl4) to form gold-protein grains; (ii) staking process of COOH-terminated polyethlenglicole molecules (PEG) onto Gal-1-Au complex and (iii) reduction of hybrid metal ions to obtain a colloidal stable solution. During the complexation, the spectral signatures related to the Gal-1 orientation on the gold surface have been found to change due to its protonation state. The effective glucose monitoring was detected by UV-vis, Raman spectroscopy and Transmission Electron Microscopy (TEM). Overall, we observed that the interaction is strongly dependent on the Gal-1 conformation at the surface of gold nanoparticles.
Collapse
Affiliation(s)
- Qiqian Liu
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fatima Aouidat
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 5, I-34127 Trieste, Italy
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Nadia Djaker
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France
| | - Jolanda Spadavecchia
- CNRS, UMR 7244, NBD-CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux et d'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France; Department of Clinical Laboratory Medicine, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
Gasilova ER, Aleksandrova GP, Volchek BZ, Vlasova EN, Baigildin VA. Smart colloids containing ensembles of gold nanoparticles conjugated with κ-carrageenan. Int J Biol Macromol 2019; 137:358-365. [DOI: 10.1016/j.ijbiomac.2019.06.215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 06/13/2019] [Accepted: 06/26/2019] [Indexed: 10/26/2022]
|
13
|
Daood U, Akram Z, Matinlinna J, Fawzy A. Dentine collagen cross-linking using tiopronin-protected Au/EDC nanoparticles formulations. Dent Mater 2019; 35:1017-1030. [DOI: 10.1016/j.dental.2019.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 01/19/2023]
|
14
|
YUCA ESRA, TAMERLER CANDAN. Self Assembled Recombinant Proteins on Metallic Nanoparticles As Bimodal Imaging Probes. JOM (WARRENDALE, PA. : 1989) 2019; 71:1281-1290. [PMID: 34149269 PMCID: PMC8211090 DOI: 10.1007/s11837-018-03325-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 12/28/2018] [Indexed: 05/12/2023]
Abstract
Combining multiple modalities is at the center of developing new methods for sensing and imaging that are required for comprehensive understanding of events at the molecular level. Various imaging modalities have been developed using metallic nanoparticles owning to their exceptional physical and chemical properties. Due to their localized surface plasmon resonance characteristics, gold and silver nanoparticles exhibit unique optoelectronic properties commonly used in biomedical sciences and engineering. Self assembled monolayers or physical adsorption have previously been adapted to functionalize the surfaces of nanoparticles with biomolecules for targeted imaging. However, depending on differences among the functional groups used on the nanoparticle surface, wide variation in the displayed biomolecular property to recognize its target may result. In the last decade, the properties of inorganic binding peptides have been proven advantageous to assemble selective functional nano-entities or proteins onto nanoparticles surfaces. Herein we explored formation of self-assembled hybrid metallic nano-architectures that are composed of gold and silver nanoparticles with fluorescent proteins, for use as bimodal imaging probes. We employed metal binding peptide-based assembly to self assemble green fluorescence protein onto metallic substrates of various geometries. Assembly of the green fluorescent proteins, genetically engineered to incorporate gold- or silver-binding peptides onto metallic nanoparticles, resulted in the generation of hybrid-, biomodal-imaging probes in a single step. Green fluorescent activity on gold and silver surfaces can be been monitored using both plasmonic and fluorescent signatures. Our results demonstrate a novel bimodal imaging system that can be finely tuned with respect to nanoparticle size and protein concentration. Resulting hybrid probes may mitigate the limitation of depth penetration into biological tissues as well as providing high signal-to-noise ratio and sensitivity.
Collapse
Affiliation(s)
- ESRA YUCA
- Institute for Bioengineering Research, University of Kansas, Lawrence-KS, 66045, USA
- Molecular Biology and Genetics, Yildiz Technical University, Istanbul 34210, Turkey
| | - CANDAN TAMERLER
- Institute for Bioengineering Research, University of Kansas, Lawrence-KS, 66045, USA
- Bioengineering Program, University of Kansas, Lawrence-KS, 66045, USA
- Mechanical Engineering, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
15
|
Vedhanayagam M, Nair BU, Sreeram KJ. Effect of functionalized gold nanoparticle on collagen stabilization for tissue engineering application. Int J Biol Macromol 2019; 123:1211-1220. [DOI: 10.1016/j.ijbiomac.2018.11.179] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 11/18/2018] [Indexed: 02/07/2023]
|
16
|
Gu L, Shan T, Ma YX, Tay FR, Niu L. Novel Biomedical Applications of Crosslinked Collagen. Trends Biotechnol 2018; 37:464-491. [PMID: 30447877 DOI: 10.1016/j.tibtech.2018.10.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 02/08/2023]
Abstract
Collagen is one of the most useful biopolymers because of its low immunogenicity and biocompatibility. The biomedical potential of natural collagen is limited by its poor mechanical strength, thermal stability, and enzyme resistance, but exogenous chemical, physical, or biological crosslinks have been used to modify the molecular structure of collagen to minimize degradation and enhance mechanical stability. Although crosslinked collagen-based materials have been widely used in biomedicine, there is no standard crosslinking protocol that can achieve a perfect balance between stability and functional remodeling of collagen. Understanding the role of crosslinking agents in the modification of collagen performance and their potential biomedical applications are crucial for developing novel collagen-based biopolymers for therapeutic gain.
Collapse
Affiliation(s)
- Lisha Gu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Tiantian Shan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| | - Lina Niu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, PR China; The Dental College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|