1
|
Tiew PY, Meldrum OW, Chotirmall SH. Applying Next-Generation Sequencing and Multi-Omics in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2023; 24:ijms24032955. [PMID: 36769278 PMCID: PMC9918109 DOI: 10.3390/ijms24032955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Microbiomics have significantly advanced over the last decade, driven by the widespread availability of next-generation sequencing (NGS) and multi-omic technologies. Integration of NGS and multi-omic datasets allow for a holistic assessment of endophenotypes across a range of chronic respiratory disease states, including chronic obstructive pulmonary disease (COPD). Valuable insight has been attained into the nature, function, and significance of microbial communities in disease onset, progression, prognosis, and response to treatment in COPD. Moving beyond single-biome assessment, there now exists a growing literature on functional assessment and host-microbe interaction and, in particular, their contribution to disease progression, severity, and outcome. Identifying specific microbes and/or metabolic signatures associated with COPD can open novel avenues for therapeutic intervention and prognosis-related biomarkers. Despite the promise and potential of these approaches, the large amount of data generated by such technologies can be challenging to analyze and interpret, and currently, there remains a lack of standardized methods to address this. This review outlines the current use and proposes future avenues for the application of NGS and multi-omic technologies in the endophenotyping, prognostication, and treatment of COPD.
Collapse
Affiliation(s)
- Pei Yee Tiew
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore 169608, Singapore
- Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Oliver W. Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
| | - Sanjay H. Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Correspondence:
| |
Collapse
|
2
|
Tumor growth prediction and classification based on the KNN algorithm and discrete-time Markov chains (DTMC). Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
3
|
Sinha K, Uddin Z, Kawsar H, Islam S, Deen M, Howlader M. Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Abstract
Asthma is a chronic respiratory disease characterized by severe inflammation of the bronchial mucosa. Allergic asthma is the most common form of this health issue. Asthma is classified into allergic and non-allergic asthma, and it can be triggered by several factors such as indoor and outdoor allergens, air pollution, weather conditions, tobacco smoke, and food allergens, as well as other factors. Asthma symptoms differ in their frequency and severity since each patient reacts differently to these triggers. Formal knowledge is selected as one of the most promising solutions to deal with these challenges. This paper presents a new personalized approach to manage asthma. An ontology-driven model supported by Semantic Web Rule Language (SWRL) medical rules is proposed to provide personalized care for an asthma patient by identifying the risk factors and the development of possible exacerbations.
Collapse
|
5
|
De Ramón Fernández A, Ruiz Fernández D, Gilart Iglesias V, Marcos Jorquera D. Analyzing the use of artificial intelligence for the management of chronic obstructive pulmonary disease (COPD). Int J Med Inform 2021; 158:104640. [PMID: 34890934 DOI: 10.1016/j.ijmedinf.2021.104640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a disease that causes airflow limitation to the lungs and has a high morbidity around the world. The objective of this study was to evaluate how artificial intelligence (AI) is being applied for the management of the disease, analyzing the objectives that are raised, the algorithms that are used and what results they offer. METHODS We conducted a scoping review following the Arksey and O'Malley (2005) and Levac et al. (2010) guidelines. Two reviewers independently searched, analyzed and extracted data from papers of five databases: Web of Science, PubMed, Scopus, Cinahl and Cochrane. To be included, the studies had to apply some AI techniques for the management of at least one stage of the COPD clinical process. In the event of any discrepancy between both reviewers, the criterion of a third reviewer prevailed. RESULTS 380 papers were identified through database searches. After applying the exclusion criteria, 67 papers were included in the study. The studies were of a different nature and pursued a wide range of objectives, highlighting mainly those focused on the identification, classification and prevention of the disease. Neural nets, support vector machines and decision trees were the AI algorithms most commonly used. The mean and median values of all the performance metrics evaluated were between 80% and 90%. CONCLUSIONS The results obtained show a growing interest in the development of medical applications that manage the different phases of the COPD clinical process, especially predictive models. According to the performance shown, these models could be a useful complementary tool in the decision-making by health specialists, although more high-quality ML studies are needed to endorse the findings of this study.
Collapse
|
6
|
Kyrimi E, McLachlan S, Dube K, Neves MR, Fahmi A, Fenton N. A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future. Artif Intell Med 2021; 117:102108. [PMID: 34127238 DOI: 10.1016/j.artmed.2021.102108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
No comprehensive review of Bayesian networks (BNs) in healthcare has been published in the past, making it difficult to organize the research contributions in the present and identify challenges and neglected areas that need to be addressed in the future. This unique and novel scoping review of BNs in healthcare provides an analytical framework for comprehensively characterizing the domain and its current state. A literature search of health and health informatics literature databases using relevant keywords found 3810 articles that were reduced to 123. This was after screening out those presenting Bayesian statistics, meta-analysis or neural networks, as opposed to BNs and those describing the predictive performance of multiple machine learning algorithms, of which BNs were simply one type. Using the novel analytical framework, we show that: (1) BNs in healthcare are not used to their full potential; (2) a generic BN development process is lacking; (3) limitations exist in the way BNs in healthcare are presented in the literature, which impacts understanding, consensus towards systematic methodologies, practice and adoption; and (4) a gap exists between having an accurate BN and a useful BN that impacts clinical practice. This review highlights several neglected issues, such as restricted aims of BNs, ad hoc BN development methods, and the lack of BN adoption in practice and reveals to researchers and clinicians the need to address these problems. To map the way forward, the paper proposes future research directions and makes recommendations regarding BN development methods and adoption in practice.
Collapse
Affiliation(s)
- Evangelia Kyrimi
- School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London, London, United Kingdom.
| | - Scott McLachlan
- School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London, London, United Kingdom; Health Informatics and Knowledge Engineering Research (HiKER) Group
| | - Kudakwashe Dube
- Health Informatics and Knowledge Engineering Research (HiKER) Group; School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Mariana R Neves
- School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London, London, United Kingdom
| | - Ali Fahmi
- School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London, London, United Kingdom
| | - Norman Fenton
- School of Electronic Engineering and Computer Science (EECS), Queen Mary University of London, London, United Kingdom
| |
Collapse
|
7
|
Abstract
The emergence of pervasive computing technology has revolutionized all aspects of life and facilitated many everyday tasks. As the world fights the coronavirus pandemic, it is necessary to find new ways to use technology to fight diseases and reduce their economic burden. Distributed systems have demonstrated efficiency in the healthcare domain, not only by organizing and managing patient data but also by helping doctors and other medical experts to diagnose diseases and take measures to prevent the development of serious conditions. In the case of chronic diseases, telemonitoring systems provide a way to monitor patients’ states and biomarkers in the course of their everyday routines. We developed a Chronical Obstructive Pulmonary Disease (COPD) healthcare system to protect patients against risk factors. However, each change in the patient context initiated the execution of the system’s entire rule base, which diminished performance. In this article, we use separation of concerns to reduce the impact of contextual changes by dividing the context, rules and services into software modules (units). We combine healthcare telemonitoring with context awareness and self-adaptation to create an adaptive architecture model for COPD patients. The model’s performance is validated using COPD data, demonstrating the efficiency of the separation of concerns and adaptation techniques in context-aware systems.
Collapse
|
8
|
Tarumi S, Takeuchi W, Chalkidis G, Rodriguez-Loya S, Kuwata J, Flynn M, Turner KM, Sakaguchi FH, Weir C, Kramer H, Shields DE, Warner PB, Kukhareva P, Ban H, Kawamoto K. Leveraging Artificial Intelligence to Improve Chronic Disease Care: Methods and Application to Pharmacotherapy Decision Support for Type-2 Diabetes Mellitus. Methods Inf Med 2021; 60:e32-e43. [PMID: 33975376 PMCID: PMC8294941 DOI: 10.1055/s-0041-1728757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Artificial intelligence (AI), including predictive analytics, has great potential to improve the care of common chronic conditions with high morbidity and mortality. However, there are still many challenges to achieving this vision. The goal of this project was to develop and apply methods for enhancing chronic disease care using AI. METHODS Using a dataset of 27,904 patients with diabetes, an analytical method was developed and validated for generating a treatment pathway graph which consists of models that predict the likelihood of alternate treatment strategies achieving care goals. An AI-driven clinical decision support system (CDSS) integrated with the electronic health record (EHR) was developed by encapsulating the prediction models in an OpenCDS Web service module and delivering the model outputs through a SMART on FHIR (Substitutable Medical Applications and Reusable Technologies on Fast Healthcare Interoperability Resources) web-based dashboard. This CDSS enables clinicians and patients to review relevant patient parameters, select treatment goals, and review alternate treatment strategies based on prediction results. RESULTS The proposed analytical method outperformed previous machine-learning algorithms on prediction accuracy. The CDSS was successfully integrated with the Epic EHR at the University of Utah. CONCLUSION A predictive analytics-based CDSS was developed and successfully integrated with the EHR through standards-based interoperability frameworks. The approach used could potentially be applied to many other chronic conditions to bring AI-driven CDSS to the point of care.
Collapse
Affiliation(s)
- Shinji Tarumi
- Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan
| | - Wataru Takeuchi
- Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan
| | - George Chalkidis
- Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan
| | - Salvador Rodriguez-Loya
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - Junichi Kuwata
- Department of Product Design, Center for Social Innovation, Hitachi Ltd., Kokubunji, Tokyo, Japan
| | - Michael Flynn
- Departments of Internal Medicine and Pediatrics, University of Utah, Salt Lake City, Utah, United States
| | - Kyle M. Turner
- Department of Pharmacotherapy, University of Utah, Salt Lake City, Utah, United States
| | - Farrant H. Sakaguchi
- Department of Family and Preventive Medicine, University of Utah, Salt Lake City, Utah, United States
| | - Charlene Weir
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - Heidi Kramer
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - David E. Shields
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - Phillip B. Warner
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - Polina Kukhareva
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| | - Hideyuki Ban
- Department of Media Intelligent Processing Research, Center for Technology Innovation Artificial Intelligence, Hitachi Ltd., Kokubunji, Tokyo, Japan
| | - Kensaku Kawamoto
- Department of Biomedical Informatics, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
9
|
Hussain A, Choi HE, Kim HJ, Aich S, Saqlain M, Kim HC. Forecast the Exacerbation in Patients of Chronic Obstructive Pulmonary Disease with Clinical Indicators Using Machine Learning Techniques. Diagnostics (Basel) 2021; 11:829. [PMID: 34064395 PMCID: PMC8147791 DOI: 10.3390/diagnostics11050829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/26/2022] Open
Abstract
Preventing exacerbation and seeking to determine the severity of the disease during the hospitalization of chronic obstructive pulmonary disease (COPD) patients is a crucial global initiative for chronic obstructive lung disease (GOLD); this option is available only for stable-phase patients. Recently, the assessment and prediction techniques that are used have been determined to be inadequate for acute exacerbation of chronic obstructive pulmonary disease patients. To magnify the monitoring and treatment of acute exacerbation COPD patients, we need to rely on the AI system, because traditional methods take a long time for the prognosis of the disease. Machine-learning techniques have shown the capacity to be effectively used in crucial healthcare applications. In this paper, we propose a voting ensemble classifier with 24 features to identify the severity of chronic obstructive pulmonary disease patients. In our study, we applied five machine-learning classifiers, namely random forests (RF), support vector machine (SVM), gradient boosting machine (GBM), XGboost (XGB), and K-nearest neighbor (KNN). These classifiers were trained with a set of 24 features. After that, we combined their results with a soft voting ensemble (SVE) method. Consequently, we found performance measures with an accuracy of 91.0849%, a precision of 90.7725%, a recall of 91.3607%, an F-measure of 91.0656%, and an AUC score of 96.8656%, respectively. Our result shows that the SVE classifier with the proposed twenty-four features outperformed regular machine-learning-based methods for chronic obstructive pulmonary disease (COPD) patients. The SVE classifier helps respiratory physicians to estimate the severity of COPD patients in the early stage, consequently guiding the cure strategy and helps the prognosis of COPD patients.
Collapse
Affiliation(s)
- Ali Hussain
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea; (A.H.); (S.A.)
| | - Hee-Eun Choi
- Department of Physical Medicine and Rehabilitation, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea;
| | - Hyo-Jung Kim
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Korea;
| | - Satyabrata Aich
- Institute of Digital Anti-Aging Healthcare, Inje University, Gimhae 50834, Korea; (A.H.); (S.A.)
| | - Muhammad Saqlain
- Department of Computer Science & Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea;
| | - Hee-Cheol Kim
- College of AI Convergence/Institute of Digital Anti-Aging Healthcare/u-HARC, Inje University, Gimhae 50834, Korea
| |
Collapse
|
10
|
Bayesian networks in healthcare: Distribution by medical condition. Artif Intell Med 2020; 107:101912. [DOI: 10.1016/j.artmed.2020.101912] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022]
|
11
|
Battineni G, Sagaro GG, Chinatalapudi N, Amenta F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. J Pers Med 2020; 10:jpm10020021. [PMID: 32244292 PMCID: PMC7354442 DOI: 10.3390/jpm10020021] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
This paper reviews applications of machine learning (ML) predictive models in the diagnosis of chronic diseases. Chronic diseases (CDs) are responsible for a major portion of global health costs. Patients who suffer from these diseases need lifelong treatment. Nowadays, predictive models are frequently applied in the diagnosis and forecasting of these diseases. In this study, we reviewed the state-of-the-art approaches that encompass ML models in the primary diagnosis of CD. This analysis covers 453 papers published between 2015 and 2019, and our document search was conducted from PubMed (Medline), and Cumulative Index to Nursing and Allied Health Literature (CINAHL) libraries. Ultimately, 22 studies were selected to present all modeling methods in a precise way that explains CD diagnosis and usage models of individual pathologies with associated strengths and limitations. Our outcomes suggest that there are no standard methods to determine the best approach in real-time clinical practice since each method has its advantages and disadvantages. Among the methods considered, support vector machines (SVM), logistic regression (LR), clustering were the most commonly used. These models are highly applicable in classification, and diagnosis of CD and are expected to become more important in medical practice in the near future.
Collapse
Affiliation(s)
- Gopi Battineni
- Center for Telemedicine and Tele pharmacy, School of Medicinal and Health Sciences Products, University of Camerino, Via Madonna Della carceri 9, 62032 Camerino, Italy; (G.G.S.); (N.C.); (F.A.)
- Correspondence: ; Tel.: +39-333-172-8206
| | - Getu Gamo Sagaro
- Center for Telemedicine and Tele pharmacy, School of Medicinal and Health Sciences Products, University of Camerino, Via Madonna Della carceri 9, 62032 Camerino, Italy; (G.G.S.); (N.C.); (F.A.)
| | - Nalini Chinatalapudi
- Center for Telemedicine and Tele pharmacy, School of Medicinal and Health Sciences Products, University of Camerino, Via Madonna Della carceri 9, 62032 Camerino, Italy; (G.G.S.); (N.C.); (F.A.)
| | - Francesco Amenta
- Center for Telemedicine and Tele pharmacy, School of Medicinal and Health Sciences Products, University of Camerino, Via Madonna Della carceri 9, 62032 Camerino, Italy; (G.G.S.); (N.C.); (F.A.)
- Research Department, International Medical Radio Center Foundation (C.I.R.M.), 00144 Roma, Italy
| |
Collapse
|
12
|
Abstract
This manuscript will explore and analyze the effects of different paradigms for the control of rigid body motion mechanics. The experimental setup will include deterministic artificial intelligence composed of optimal self-awareness statements together with a novel, optimal learning algorithm, and these will be re-parameterized as ideal nonlinear feedforward and feedback evaluated within a Simulink simulation. Comparison is made to a custom proportional, derivative, integral controller (modified versions of classical proportional-integral-derivative control) implemented as a feedback control with a specific term to account for the nonlinear coupled motion. Consistent proportional, derivative, and integral gains were used throughout the duration of the experiments. The simulation results will show that akin feedforward control, deterministic self-awareness statements lack an error correction mechanism, relying on learning (which stands in place of feedback control), and the proposed combination of optimal self-awareness statements and a newly demonstrated analytically optimal learning yielded the highest accuracy with the lowest execution time. This highlights the potential effectiveness of a learning control system.
Collapse
|
13
|
Franssen FME, Alter P, Bar N, Benedikter BJ, Iurato S, Maier D, Maxheim M, Roessler FK, Spruit MA, Vogelmeier CF, Wouters EFM, Schmeck B. Personalized medicine for patients with COPD: where are we? Int J Chron Obstruct Pulmon Dis 2019; 14:1465-1484. [PMID: 31371934 PMCID: PMC6636434 DOI: 10.2147/copd.s175706] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 06/05/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic airflow limitation is the common denominator of patients with chronic obstructive pulmonary disease (COPD). However, it is not possible to predict morbidity and mortality of individual patients based on the degree of lung function impairment, nor does the degree of airflow limitation allow guidance regarding therapies. Over the last decades, understanding of the factors contributing to the heterogeneity of disease trajectories, clinical presentation, and response to existing therapies has greatly advanced. Indeed, diagnostic assessment and treatment algorithms for COPD have become more personalized. In addition to the pulmonary abnormalities and inhaler therapies, extra-pulmonary features and comorbidities have been studied and are considered essential components of comprehensive disease management, including lifestyle interventions. Despite these advances, predicting and/or modifying the course of the disease remains currently impossible, and selection of patients with a beneficial response to specific interventions is unsatisfactory. Consequently, non-response to pharmacologic and non-pharmacologic treatments is common, and many patients have refractory symptoms. Thus, there is an ongoing urgency for a more targeted and holistic management of the disease, incorporating the basic principles of P4 medicine (predictive, preventive, personalized, and participatory). This review describes the current status and unmet needs regarding personalized medicine for patients with COPD. Also, it proposes a systems medicine approach, integrating genetic, environmental, (micro)biological, and clinical factors in experimental and computational models in order to decipher the multilevel complexity of COPD. Ultimately, the acquired insights will enable the development of clinical decision support systems and advance personalized medicine for patients with COPD.
Collapse
Affiliation(s)
- Frits ME Franssen
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Peter Alter
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Birke J Benedikter
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
- Department of Medical Microbiology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | | | | | - Michael Maxheim
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Fabienne K Roessler
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martijn A Spruit
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Rehabilitation Sciences, Hasselt University, Diepenbeek, Belgium
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Emiel FM Wouters
- Department of Research and Education, CIRO, Horn, The Netherlands
- Department of Respiratory Medicine, Maastricht University Medical Centre, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Bernd Schmeck
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps University of Marburg (UMR), Member of the German Center for Lung Research (DZL), Marburg, Germany
- Institute for Lung Research, Universities of Giessen and Marburg Lung Centre, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
14
|
Abstract
Over the past 30 years, information technology has gradually transformed the way health care is provisioned for patients. Chronic Obstructive Pulmonary Disease (COPD) is an incurable malady that threatens the lives of millions around the world. The huge amount of medical information in terms of complex interdependence between progression of health problems and various other factors makes the representation of data more challenging. This study investigated how formal semantic standards could be used for building an ontology knowledge repository to provide ubiquitous healthcare and medical recommendations for COPD patient to reduce preventable harm. The novel contribution of the suggested framework resides in the patient-centered monitoring approach, as we work to create dynamic adaptive protection services according to the current context of patient. This work executes a sequential modular approach consisting of patient, disease, location, devices, activities, environment and services to deliver personalized real-time medical care for COPD patients. The main benefits of this project are: (1) adhering to dynamic safe boundaries for the vital signs, which may vary depending on multiple factors; (2) assessing environmental risk factors; and (3) evaluating the patient’s daily activities through scheduled events to avoid potentially dangerous situations. This solution implements an interrelated set of ontologies with a logical base of Semantic Web Rule Language (SWRL) rules derived from the medical guidelines and expert pneumologists to handle all contextual situations.
Collapse
|