1
|
Peker F, Ferhanoğlu O. Active distance control in multi-capsule endoscopy via closed loop electromagnetic force between capsules. Med Biol Eng Comput 2024; 62:1153-1163. [PMID: 38158548 DOI: 10.1007/s11517-023-02997-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/09/2023] [Indexed: 01/03/2024]
Abstract
Capsule endoscopy offers a non-invasive and patient-friendly method for imaging the gastrointestinal tract, boasting superior tissue accessibility compared to traditional endoscopy and colonoscopy. While advances have led to capsules capable of drug delivery, tactile sensing, and biopsy, size constraints often limit a single capsule from having multifunctionality. In response, we introduce multi-capsule endoscopy, where individually ingested capsules, each with unique functionalities, work collaboratively. However, synchronized navigation of these capsules is essential for this approach. In this paper, we present an active distance control strategy using a closed-loop system. This entails equipping one capsule with a sphere permanent magnet and the other with a solenoid. We utilized a Simulink model, incorporating (i) the peristalsis motion on the primary capsule, (ii) a PID controller, (iii) force dynamics between capsules through magnetic dipole approximation, and (iv) position tracking of the secondary capsule. For practical implementation, Hall effect sensors determined the inter-capsule distance, and a PID controller adjusted the solenoid's current to maintain the desired capsule spacing. Our proof-of-concept experiments, conducted on phantoms and ex vivo bovine tissues, pulled the leading capsule mimicking a typical human peristalsis speed of 1 cm/min. Results showcased an inter-capsule distance of 1.94 mm ± 0.097 mm for radii of curvature at 500 mm, 250 mm, and 100 mm, aiming for a 2-mm capsule spacing. For ex vivo bovine tissue, the achieved distance was 0.97 ± 0.28 mm against a target inter-capsule distance of 1 mm. Through the successful demonstration of precise inter-capsule control, this study paves the way for the potential of multi-capsule endoscopy in future research.
Collapse
Affiliation(s)
- Furkan Peker
- Faculty of Electrical and Electronics Eng., Department of Electronics and Communication Eng., Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.
| | - Onur Ferhanoğlu
- Faculty of Electrical and Electronics Eng., Department of Electronics and Communication Eng., Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
2
|
Lyons B, Balkaran JPR, Dunn-Lawless D, Lucian V, Keller SB, O’Reilly CS, Hu L, Rubasingham J, Nair M, Carlisle R, Stride E, Gray M, Coussios C. Sonosensitive Cavitation Nuclei-A Customisable Platform Technology for Enhanced Therapeutic Delivery. Molecules 2023; 28:7733. [PMID: 38067464 PMCID: PMC10708135 DOI: 10.3390/molecules28237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.
Collapse
Affiliation(s)
- Brian Lyons
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Joel P. R. Balkaran
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Darcy Dunn-Lawless
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Veronica Lucian
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Sara B. Keller
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Colm S. O’Reilly
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford OX1 3PJ, UK;
| | - Luna Hu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Jeffrey Rubasingham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Malavika Nair
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Robert Carlisle
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Michael Gray
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| | - Constantin Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK; (J.P.R.B.); (D.D.-L.); (V.L.); (S.B.K.); (L.H.); (J.R.); (M.N.); (R.C.); (E.S.); (M.G.)
| |
Collapse
|
3
|
Usacheva EV, Druk IV, Nadey EV, Usachev NA. Videocapsular endoscopy in the diagnosis of gastrointestinal diseases. EXPERIMENTAL AND CLINICAL GASTROENTEROLOGY 2023:61-68. [DOI: 10.31146/1682-8658-ecg-211-3-61-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The increase in the frequency of the use of video capsule endoscopy (VCE) in the study of the gastrointestinal tract, the improvement of this technology over the past decade determine the relevance of describing the advantages of this method over traditional endoscopic methods, as well as the disadvantages of the method and directions of development. VCE is a method in which diseases that were previously detected only posthumously are detected. VCE is more informative than X-ray contrast examination methods or magnetic resonance imaging of the gastrointestinal tract. VCE better detects small neoplasms, which improves the quality of diagnosis and allows you to start timely treatment. VCE is rarely the first choice of imaging method. It is most useful for detecting superficial or hidden lesions and is best used in combination with other endoscopic methods. The cost-effectiveness of this study has yet to be determined. The use of video capsule endoscopy is limited by the high cost of research, but in the coming years, thanks to the development of technologies, the cheaper production process, it will become available to many clinics and patients as a research method.
Collapse
|
4
|
Smart pills for gastrointestinal diagnostics and therapy. Adv Drug Deliv Rev 2021; 177:113931. [PMID: 34416311 DOI: 10.1016/j.addr.2021.113931] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022]
Abstract
Ingestible smart pills have the potential to be a powerful clinical tool in the diagnosis and treatment of gastrointestinal disease. Though examples of this technology, such as capsule endoscopy, have been successfully translated from the lab into clinically used products, there are still numerous challenges that need to be overcome. This review gives an overview of the research being done in the area of ingestible smart pills and reports on the technical challenges in this field.
Collapse
|
5
|
A New Fracture Detection Algorithm of Low Amplitude Acoustic Emission Signal Based on Kalman Filter-Ripple Voltage. SENSORS 2021; 21:s21124247. [PMID: 34205784 PMCID: PMC8234550 DOI: 10.3390/s21124247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022]
Abstract
In this study, an acoustic emission (AE) sensor was utilized to predict fractures that occur in a product during the sheet metal forming process. An AE activity was analyzed, presuming that AE occurs when plastic deformation and fracturing of metallic materials occur. For the analysis, a threshold voltage is set to distinguish the AE signal from the ripple voltage signal and noise. If the amplitude of the AE signal is small, it is difficult to distinguish the AE signal from the ripple voltage signal and the noise signal. Hence, there is a limitation in predicting fractures using the AE sensor. To overcome this limitation, the Kalman filter was used in this study to remove the ripple voltage signal and noise signal and then analyze the activity. However, it was difficult to filter out the ripple voltage signal using a conventional low-pass filter or Kalman filter because the ripple voltage signal is a high-frequency component governed by the switch-mode of the power supply. Therefore, a Kalman filter that has a low Kalman gain was designed to extract only the ripple voltage signal. Based on the KF-RV algorithm, the measured ripple voltage and noise signal were reduced by 97.3% on average. Subsequently, the AE signal was extracted appropriately using the difference between the measured value and the extracted ripple voltage signal. The activity of the extracted AE signal was analyzed using the ring-down count among various AE parameters to determine if there was a fracture in the test specimen.
Collapse
|
6
|
Multi-Capsule Endoscopy: An initial study on modeling and phantom experimentation of a magnetic capsule train. J Med Biol Eng 2021. [DOI: 10.1007/s40846-021-00610-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Ultrasound mediated delivery of quantum dots from a proof of concept capsule endoscope to the gastrointestinal wall. Sci Rep 2021; 11:2584. [PMID: 33510366 PMCID: PMC7844260 DOI: 10.1038/s41598-021-82240-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 01/14/2021] [Indexed: 12/15/2022] Open
Abstract
Biologic drugs, defined as therapeutic agents produced from or containing components of a living organism, are of growing importance to the pharmaceutical industry. Though oral delivery of medicine is convenient, biologics require invasive injections because of their poor bioavailability via oral routes. Delivery of biologics to the small intestine using electronic delivery with devices that are similar to capsule endoscopes is a promising means of overcoming this limitation and does not require reformulation of the therapeutic agent. The efficacy of such capsule devices for drug delivery could be further improved by increasing the permeability of the intestinal tract lining with an integrated ultrasound transducer to increase uptake. This paper describes a novel proof of concept capsule device capable of electronic application of focused ultrasound and delivery of therapeutic agents. Fluorescent markers, which were chosen as a model drug, were used to demonstrate in vivo delivery in the porcine small intestine with this capsule. We show that the fluorescent markers can penetrate the mucus layer of the small intestine at low acoustic powers when combining microbubbles with focused ultrasound during in vivo experiments using porcine models. This study illustrates how such a device could be potentially used for gastrointestinal drug delivery and the challenges to be overcome before focused ultrasound and microbubbles could be used with this device for the oral delivery of biologic therapeutics.
Collapse
|
8
|
Abstract
Current conventional endoscopes have restricted the accuracy of treatment delivery and monitoring. Over the past decade, there have been major developments in nanotechnology and light triggered therapy, potentially allowing a better detection of challenging lesions and targeted treatment of malignancies in the gastrointestinal tract. Theranostics is a developing form of personalized medicine because it combines diagnosis and targeted treatment delivered in one step using advances in nanotechnology. This review describes the light-triggered therapies (including photodynamic, photothermal, and photoimmunotherapies), nanotechnological advances with nanopowder, nanostent, nanogels, and nanoparticles, enhancements brought to endoscopic ultrasound, in addition to experimental endoscopic techniques, combining both enhanced diagnoses and therapies, including a developed prototype of a “smart” multifunctional endoscope for localized colorectal cancer, near-infrared laser endoscope targeting the gastrointestinal stromal tumors, the concept of endocapsule for obscure gastrointestinal bleed, and a proof-of-concept therapeutic capsule using ultrasound-mediated targeted drug delivery. Hence, the following term has been proposed encompassing these technologies: “Theranostic gastrointestinal endoscopy.” Future efforts for integration of these technologies into clinical practice would be directed toward translational and clinical trials translating into a more personalized and interdisciplinary diagnosis and treatment, shorter procedural time, higher precision, higher cost-effectiveness, and less need for repetitive procedures.
Collapse
|
9
|
Qiu Y, Huang Y, Zhang Z, Cox BF, Liu R, Hong J, Mu P, Lay HS, Cummins G, Desmulliez MPY, Clutton E, Zheng H, Qiu W, Cochran S. Ultrasound Capsule Endoscopy With a Mechanically Scanning Micro-ultrasound: A Porcine Study. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:796-804. [PMID: 31902446 DOI: 10.1016/j.ultrasmedbio.2019.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/21/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Wireless capsule endoscopy has been used for the clinical examination of the gastrointestinal (GI) tract for two decades. However, most commercially available devices only utilise optical imaging to examine the GI wall surface. Using this sensing modality, pathology within the GI wall cannot be detected. Micro-ultrasound (μUS) using high-frequency (>20 MHz) ultrasound can provide a means of transmural or cross-sectional image of the GI tract. Depth of imaging is approximately 10 mm with a resolution of between 40-120 μm that is sufficient to differentiate between subsurface histologic layers of the various regions of the GI tract. Ultrasound capsule endoscopy (USCE) uses a capsule equipped with μUS transducers that are capable of imaging below the GI wall surface, offering thereby a complementary sensing technique to optical imaging capsule endoscopy. In this work, a USCE device integrated with a ∼30 MHz ultrasonic transducer was developed to capture a full 360° image of the lumen. The performance of the device was initially evaluated using a wire phantom, indicating an axial resolution of 69.0 μm and lateral resolution of 262.5 μm. Later, in vivo imaging performance was characterised in the oesophagus and small intestine of anaesthetized pigs. The reconstructed images demonstrate clear layer differentiation of the lumen wall. The tissue thicknesses measured from the B-scan images show good agreement with ex vivo images from the literature. The high-resolution ultrasound images in the in vivo porcine model achieved with this device is an encouraging preliminary step in the translation of these devices toward future clinical use.
Collapse
Affiliation(s)
- Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Yaocai Huang
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhiqiang Zhang
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Rong Liu
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiehan Hong
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Peitian Mu
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Holly S Lay
- School of Engineering, University of Glasgow, Glasgow, UK
| | - Gerard Cummins
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Marc P Y Desmulliez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Eddie Clutton
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, UK
| | - Hairong Zheng
- Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weibao Qiu
- School of Engineering, University of Glasgow, Glasgow, UK; Shenzhen key laboratory of ultrasound imaging and therapy, Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, UK
| |
Collapse
|
10
|
Stewart F, Verbeni A, Qiu Y, Cox BF, Vorstius J, Newton IP, Huang Z, Menciassi A, Näthke I, Cochran S. A Prototype Therapeutic Capsule Endoscope for Ultrasound-Mediated Targeted Drug Delivery. ACTA ACUST UNITED AC 2018. [DOI: 10.1142/s2424905x18400019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The prevalence of gastrointestinal (GI) diseases such as Crohn’s disease, which is chronic and incurable, are increasing worldwide. Treatment often involves potent drugs with unwanted side effects. The technological–pharmacological combination of capsule endoscopy with ultrasound-mediated targeted drug delivery (UmTDD) described in this paper carries new potential for treatment of these diseases throughout the GI tract. We describe a proof-of-concept UmTDD capsule and present preliminary results to demonstrate its promise as an autonomous tool to treat GI diseases.
Collapse
Affiliation(s)
- Fraser Stewart
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
| | | | - Yongqiang Qiu
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| | - Ben F. Cox
- School of Medicine, University of Dundee, Dundee, DD1 9SY, Scotland
| | - Jan Vorstius
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, Scotland
| | - Ian P. Newton
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
| | - Zhihong Huang
- School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, Scotland
| | | | - Inke Näthke
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland
| | - Sandy Cochran
- School of Engineering, University of Glasgow, Glasgow, G12 8QQ, Scotland
| |
Collapse
|
11
|
Seo YD, Jin SE, Kim D, Lee DH, Yang SG. Fabrication of Eudragit polymeric nanoparticles using ultrasonic nebulization method for enhanced oral absorption of megestrol acetate. Pharm Dev Technol 2017; 23:407-413. [PMID: 29095656 DOI: 10.1080/10837450.2017.1400049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Megestrol acetate (MGA) is used as a progestagen to treat advanced cancers in the breast or uterus and anorexia-cachexia syndrome in cancer patients. Due to its low solubility (BCS class II), MGA bioavailability needs to be enhanced for efficacy and safety. We developed MGA-encapsulated Eudragit® L100 (EUD) nanoparticles (MGA-EUD (1:1) and MGA-EUD (2:1)) using an ultrasonic nebulization method. MGA-EUD (1:1) and MGA-EUD (2:1) consisted of MGA and EUD at the mass ratios of 1:1 and 2:1. Their physicochemical properties, i.e. particle size, loading efficiency, morphology, and crystallinity were determined. Dissolution tests were performed using USP method II. For pharmacokinetics, they were orally administered at 50 mg/kg to mice. Microcrystalline MGA suspension (MGA-MC, Megace®, BMS) was used as control. MGA-EUD (1:1) and MGA-EUD (2:1) had a smooth and spherical shape of 0.70 and 1.05 µm in diameter with loading efficiencies of 93 and 95% showing amorphous states of MGA. They significantly enhanced the dissolution potential of MGA. Oral bioavailability of MGA-EUD (1:1) and MGA-EUD (2:1) increased 2.0- and 1.7-fold compared to that of MGA-MC. It suggests that ultrasonic nebulization method for the fabrication of polymeric nanoparticles is a promising approach to improve the bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Young Dai Seo
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Eon Jin
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Daehyun Kim
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Don Haeng Lee
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| | - Su-Geun Yang
- a World Class Smart Lab, Department of New Drug Development, College of Medicine , Inha University , Incheon , Republic of Korea
| |
Collapse
|