1
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
2
|
Gao N, Huang J, Chen Z, Liang Y, Zhang L, Peng Z, Pan C. Biomimetic Ion Channel Regulation for Temperature-Pressure Decoupled Tactile Perception. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302440. [PMID: 37668280 DOI: 10.1002/smll.202302440] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/15/2023] [Indexed: 09/06/2023]
Abstract
The perception of temperature and pressure of skin plays a vital role in joint movement, hand grasp, emotional expression, and self-protection of human. Among many biomimetic materials, ionic gels are uniquely suited to simulate the function of skin due to its ionic transport mechanism. However, both the temperature and pressure sensing are heavily dependent on the changes in ionic conductivity, making it impossible to decouple the temperature and pressure signals. Here, a pressure-insensitive and temperature-modulated ion channel is designed by synergistic strategies for gel skeleton's compact packing and ultra-thin structure, mimicking the function of the temperature ion channel in human skin. This ion-confined gel can completely suppress the pressure response of the temperature sensing layer. Furthermore, a temperature-pressure decoupled ionic sensor is fabricated and it is demonstrated that the ionic sensor can sense complex signals of temperature and pressure. This novel and effective approach has great potential to overcome one of the current barriers in developing ionic skin and extending its applications.
Collapse
Affiliation(s)
- Naiwei Gao
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jiaoya Huang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwu Chen
- Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China
| | - Yegang Liang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Li Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Zhengchun Peng
- Center for Stretchable Electronics and Nano Sensors, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Caofeng Pan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
3
|
Development of real-time measurement system for emission and absorption of visible light during heavy gamma-ray irradiation. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Abstract
During the past two decades, one–dimensional (1D) metal–oxide nanowire (NW)-based molecular sensors have been witnessed as promising candidates to electrically detect volatile organic compounds (VOCs) due to their high surface to volume ratio, single crystallinity, and well-defined crystal orientations. Furthermore, these unique physical/chemical features allow the integrated sensor electronics to work with a long-term stability, ultra-low power consumption, and miniature device size, which promote the fast development of “trillion sensor electronics” for Internet of things (IoT) applications. This review gives a comprehensive overview of the recent studies and achievements in 1D metal–oxide nanowire synthesis, sensor device fabrication, sensing material functionalization, and sensing mechanisms. In addition, some critical issues that impede the practical application of the 1D metal–oxide nanowire-based sensor electronics, including selectivity, long-term stability, and low power consumption, will be highlighted. Finally, we give a prospective account of the remaining issues toward the laboratory-to-market transformation of the 1D nanostructure-based sensor electronics.
Collapse
|
5
|
Hussain S, Park SY. Sweat-Based Noninvasive Skin-Patchable Urea Biosensors with Photonic Interpenetrating Polymer Network Films Integrated into PDMS Chips. ACS Sens 2020; 5:3988-3998. [PMID: 33259201 DOI: 10.1021/acssensors.0c01757] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wearable noninvasive biosensor for in situ urea detection and quantification was developed using a urease-immobilized photonic interpenetrating polymer network (IPNurease) film. The photonic IPN film was intertwined with solid-state cholesteric liquid crystals (CLCsolid) and a poly(acrylic acid) (PAA) network on a flexible poly(ethylene terephthalate) substrate adhered to a poly(dimethylsiloxane) (PDMS) chip that was fabricated using an aluminum mold. The presence of urea in the chemical matrix of human sweat red-shifted the reflected color of the photonic IPNurease film, and quantification was achieved by observing the wavelength at the photonic band gap (λPBG) with a limit of detection of 0.4 mM and a linear range of 0.9-50 mM. The color changes observed in the photonic IPN film were digitalized using the CIE 1931 xy coordinates on a cell phone image, thereby enabling fast, direct diagnosis via a downloadable app. This novel PDMS chip can be expanded for use with other biosensors.
Collapse
Affiliation(s)
- Saddam Hussain
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Soo-young Park
- School of Applied Chemical Engineering, Polymeric Nano Materials Laboratory, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
6
|
Afik N, Yadgar O, Volison-Klimentiev A, Peretz-Damari S, Ohayon-Lavi A, Alatawna A, Yosefi G, Bitton R, Fuchs N, Regev O. Sensing Exposure Time to Oxygen by Applying a Percolation-Induced Principle. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20164465. [PMID: 32785077 PMCID: PMC7471990 DOI: 10.3390/s20164465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
The determination of food freshness along manufacturer-to-consumer transportation lines is a challenging problem that calls for cheap, simple, reliable, and nontoxic sensors inside food packaging. We present a novel approach for oxygen sensing in which the exposure time to oxygen-rather than the oxygen concentration per se-is monitored. We developed a nontoxic hybrid composite-based sensor consisting of graphite powder (conductive filler), clay (viscosity control filler) and linseed oil (the matrix). Upon exposure to oxygen, the insulating linseed oil is oxidized, leading to polymerization and shrinkage of the matrix and hence to an increase in the concentration of the electrically conductive graphite powder up to percolation, which serves as an indicator of food spoilage. In the developed sensor, the exposure time to oxygen (days to weeks) is obtained by measuring the electrical conductivity though the sensor. The sensor functionality could be tuned by changing the oil viscosity, the aspect ratio of the conductive filler, and/or the concentration of the clay, thereby adapting the sensor to monitoring the quality of food products with different sensitivities to oxygen exposure time (e.g., fish vs grain).
Collapse
Affiliation(s)
- Noa Afik
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Omri Yadgar
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Anastasiya Volison-Klimentiev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Sivan Peretz-Damari
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Avia Ohayon-Lavi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Amr Alatawna
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Gal Yosefi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
| | - Ronit Bitton
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Naomi Fuchs
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Oren Regev
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (O.Y.); (A.V.-K.); (S.P.-D.); (A.O.-L.); (A.A.); (G.Y.); (R.B.)
- The Ilse Katz Institute for Meso and Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
7
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Kamarudin SF, Mustapha M, Kim JK. Green Strategies to Printed Sensors for Healthcare Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1729180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Siti Fatimah Kamarudin
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Mariatti Mustapha
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Penang, Malaysia
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| |
Collapse
|
9
|
Near-Field Communication Sensors. SENSORS 2019; 19:s19183947. [PMID: 31547400 PMCID: PMC6767079 DOI: 10.3390/s19183947] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 11/21/2022]
Abstract
Near-field communication is a new kind of low-cost wireless communication technology developed in recent years, which brings great convenience to daily life activities such as medical care, food quality detection, and commerce. The integration of near-field communication devices and sensors exhibits great potential for these real-world applications by endowing sensors with new features of powerless and wireless signal transferring and conferring near field communication device with sensing function. In this review, we summarize recent progress in near field communication sensors, including the development of materials and device design and their applications in wearable personal healthcare devices. The opportunities and challenges in near-field communication sensors are discussed in the end.
Collapse
|
10
|
Tunable Adhesion for Bio-Integrated Devices. MICROMACHINES 2018; 9:mi9100529. [PMID: 30424462 PMCID: PMC6215118 DOI: 10.3390/mi9100529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 02/03/2023]
Abstract
With the rapid development of bio-integrated devices and tissue adhesives, tunable adhesion to soft biological tissues started gaining momentum. Strong adhesion is desirable when used to efficiently transfer vital signals or as wound dressing and tissue repair, whereas weak adhesion is needed for easy removal, and it is also the essential step for enabling repeatable use. Both the physical and chemical properties (e.g., moisture level, surface roughness, compliance, and surface chemistry) vary drastically from the skin to internal organ surfaces. Therefore, it is important to strategically design the adhesive for specific applications. Inspired largely by the remarkable adhesion properties found in several animal species, effective strategies such as structural design and novel material synthesis were explored to yield adhesives to match or even outperform their natural counterparts. In this mini-review, we provide a brief overview of the recent development of tunable adhesives, with a focus on their applications toward bio-integrated devices and tissue adhesives.
Collapse
|