1
|
Govindharaj A, Manimaran P, Chen SM, Tamilalagan E, Selvaraj M, Singh G. An electrochemical signal amplification using functionalized carbon nanofiber integrated manganese molybdate nanocomposite for rapid detection of vanillin in food samples. Food Chem 2025; 475:143334. [PMID: 39954650 DOI: 10.1016/j.foodchem.2025.143334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/09/2025] [Accepted: 02/08/2025] [Indexed: 02/17/2025]
Abstract
Vanillin, a widely used flavoring agent in food, pharmaceuticals, and cosmetics, can cause health issues such as liver dysfunction and nausea when consumed excessively. Therefore, it is essential to monitor and control the vanillin level. This study presents the development of sensitive and cost-effective electrochemical sensor for vanillin detection, utilizing manganese molybdate (MnMoO4) nanoparticles integrated with functionalized carbon nanofibers (f-CNF) nanocomposite. The chemical composition and morphology of MnMoO4@f-CNF were analyzed using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and transition electron microscopy. The fabricated MnMoO4@f-CNF sensor achieved the low limit of detection of 0.027 μM and wide linear range of 1.25-487.5 and 587.5-1500 μM in amperometry method towards vanillin detection. The practical feasibility of the prepared sensor towards vanillin was tested in food samples and confirmed the sensor's reliability. This study demonstrates the MnMoO4@f-CNF sensor's potential for rapid, accurate, and selective detection of vanillin in food safety and quality control.
Collapse
Affiliation(s)
- Abirami Govindharaj
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Parthasarathi Manimaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan.
| | - Elayappan Tamilalagan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Gurjaspreet Singh
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| |
Collapse
|
2
|
Xu X, Wang J, Jing B, Sun C, Li W, Chang Z. Highly selective and visual detection of vanillin based on fluorescence Cd-MOF sensor in milk powders. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124958. [PMID: 39146627 DOI: 10.1016/j.saa.2024.124958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/23/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Vanillin is a commonly used synthetic flavoring agent in daily life. However, excessive intake of vanillin may pose risks to human health. Therefore, there is an urgent need for rapid and sensitive detection methods for vanillin. In this study, we developed a fluorescent sensor based on Cd-MOF for the sensitive and selective recognition of vanillin. The presence of vanillin leads to significant fluorescence quenching of Cd-MOF due to competitive absorption and photoinduced electron transfer (PET). The limit of detection was determined to be 39.6 nM, which is the lowest-among the reported fluorescent probes. The sensor was successfully applied for the detection of vanillin in real samples such as powdered milk and milk, with a recovery rate ranging from 96.88 % to 104.83 %. Furthermore, by immobilizing the Cd-MOF probe into a polyvinyl alcohol (PVA) film, we achieved a portable and visual detection composite materials for vanillin.
Collapse
Affiliation(s)
- Xinke Xu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jingze Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bo Jing
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Changyan Sun
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenjun Li
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhidong Chang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Li X, Fang Y, Li H, Feng S. Heterojunction of branched benzopyrazine-based polymers coating on graphene for electrochemical sensing of vanillin. Talanta 2024; 277:126420. [PMID: 38876036 DOI: 10.1016/j.talanta.2024.126420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Vanillin finds widespread applications in various industries, such as food, pharmaceuticals, and cosmetics. However, excessive intake of vanillin could pose risks to human health. This study detailed the successful creation of a heterojunction of branched benzopyrazine-based polymers coating on graphene (CMP-rGO) through the Sonogashira-Hagihara coupling reaction. Utilizing the CMP-rGO, a novel electrochemical sensor for vanillin detection was developed. Besides, the synthesized materials were validated using standard characterization techniques. Both cyclic voltammetry and differential pulse voltammetry techniques were employed to investigate vanillin's electrochemical characteristics on this sensor. The findings indicated a significant enhancement in vanillin's electrochemical signal responsiveness with the application of CMP-rGO. Under optimal conditions, the sensor demonstrated a linear response to vanillin concentrations ranging from 0.08 to 33 μM and achieved a detection limit as low as 0.014 μM. Also, the constructed electrochemical sensor exhibited excellent selectivity, stability, and reproducibility. It has been effectively employed to detect vanillin in real samples such as human serum, human urine, and vanillin tablets, with a recovery rate of 99.13-103.6 % and an RSD of 3.46-1.26 %. Overall, this innovative sensor offers a novel approach to the efficient and convenient detection of vanillin.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Yuelan Fang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Huan Li
- The First Clinical Institue, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Suxiang Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
4
|
Shao T, Song X, Jiang Y, Wang C, Li P, Sun S, Wang D, Wei W. Vanillin-Catalyzed highly sensitive luminol chemiluminescence and its application in food detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122535. [PMID: 36857865 DOI: 10.1016/j.saa.2023.122535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Among various chemiluminescence (CL) systems, luminol-H2O2 system is used extensively due to its cheapness and sensitivity. Herein, 4-hydroxy-3-methoxybenzaldehyde, known as vanillin, was firstly found to be able to catalyze H2O2 very efficiently to produce •OH and O2•-, which can be used to enhance the CL of luminol-H2O2 as Co+. In alkaline aqueous solution, vanillin catalyzed the dissociation of H2O2 into active •OH and O2•- radicals and accelerated luminol-H2O2 reaction to emit strong CL signal. Combining the stabilizing function of β-CD, CL intensity of luminol-H2O2 was enhanced further. Thus, dual-signal amplification of luminol-H2O2 chemiluminescence based on the catalyzing function of vanillin and the stabilizing function of β-CD was proposed and its mechanism was explored deeply in the manuscript. Interestingly, vanillin is a highly prized flavor compound broadly used as food additive, however, the excessive intake of vanillin is harmful to human and thus the determination of vanillin is very important. On the basis of the luminol-β-CD-H2O2/vanillin reaction, a low-cost, rapid and simple CL sensor has been established to detect vanillin. The sensor was able to detect vanillin in the range of 1.0 μM ∼ 75 μM with a detection limit of 0.89 μM (S/N = 3). It can also be used for CL imaging detection with satisfactory results.
Collapse
Affiliation(s)
- Tong Shao
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Xiaolei Song
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Yufeng Jiang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China
| | - Peng Li
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Shihao Sun
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Dingzhong Wang
- Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Ren YB, Xu HY, Yan JW, Cao DX, Du JL. Multifunctional luminescent Zr(IV)-MOF for rapid and efficient detection of vanillin, CrO 42- and Cr 2O 72- ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121390. [PMID: 35598561 DOI: 10.1016/j.saa.2022.121390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Fast and efficient detection of pollutants in the food or wastewater is an urgent need for protecting human health and ecological environment. Herein, a luminescent Zr(IV)-MOF (HBU-20) has been conveniently synthesized. It could be used as a fluorescent probe for detection of vanillin, CrO42-, and Cr2O72- in aqueous medium. All the fluorescence response time is less than 10 s and the detection limits of vanillin, CrO42- and Cr2O72- achieve 0.38 μM, 0.065 μM and 0.0089 μM, respectively. Interestingly, common anions, cations and amino acids in the solution can not affect the fluorescence detection. Meanwhile, the fluorescence detection process can be successfully implemented even under strong acid or strong alkaline conditions. Further research shows that the inner filter effect (IFE) plays a major role in the sensing process. The rapid and sensitive fluorescence responses indicate that the compound is a promising multifunctional probe for sensing toxic substance. The results can provide an important reference for the design of new fluorescent probes.
Collapse
Affiliation(s)
- Ya-Bin Ren
- College of Chemistry & Environmental Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Hao-Yu Xu
- College of Chemistry & Environmental Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Jiang-Wen Yan
- College of Chemistry & Environmental Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Dong-Xu Cao
- College of Chemistry & Environmental Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China
| | - Jian-Long Du
- College of Chemistry & Environmental Science, and Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, PR China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
6
|
Elaguech MA, Bahri M, Djebbi K, Zhou D, Shi B, Liang L, Komarova N, Kuznetsov A, Tlili C, Wang D. Nanopore-based aptasensor for label-free and sensitive vanillin determination in food samples. Food Chem 2022; 389:133051. [PMID: 35490517 DOI: 10.1016/j.foodchem.2022.133051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022]
Abstract
Dielectric breakdown technique was utlised to fabricate 5-6 nm nanopores for vanillin detection in various food samples. A highly selective aptamer (Van_74) with high binding affinity towards vanillin was used as capture probe. Under optimal conditions, aptamer/vanillin complex translocation induced deeper events than the bare aptamer. As a result, the proposed nanopore aptasensor exhibits a linear range from 0.5 to 5 nM (R2 = 0.972) and a low detection limit of 500 pM, which is significantly better than conventional platforms. Furthermore, our aptasensor showed excellent immunity against different interferons and was used to detect vanillin in different food samples. The food sample measurements were confirmed with an additional UV-Vis assay, the results of the two techniques were statistically evaluated and showed no statistically significant difference. Hence, this work represents a proof-of-concept involving the design and testing of aptamer/nanopore sensors for small molecules detection, which plays a critical role in food safety.
Collapse
Affiliation(s)
- Mohamed Amin Elaguech
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Mohamed Bahri
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Khouloud Djebbi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Biao Shi
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China
| | | | - Alexander Kuznetsov
- SMC Technological Centre, Moscow 124498, Russia; Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Chaker Tlili
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China.
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, PR China; Chongqing School, University of Chinese Academy of Sciences (UCAS), Chongqing 400714, PR China; University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
7
|
Moradi O. A review on nanomaterial-based electrochemical sensors for determination of vanillin in food samples. Food Chem Toxicol 2022; 168:113391. [PMID: 36041662 DOI: 10.1016/j.fct.2022.113391] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Vanillin is an organic compound that not only acts as a flavoring and fragrance enhancer in some foods, but also can have antioxidant, anti-inflammatory, anti-cancer and anti-depressant effects. Nevertheless, its excessive use can be associated with side effects on human health. Consequently, there is a need to achieve a rapid vanillin determination approach to enhance food safety. The diversity and high sensitivity of analytical approaches has led researchers to use more advanced and efficient methods providing quantitative and qualitative outcomes in complex matrices. Among these, prominent attention has been drawn to electrochemical sensors for reasons such as reliability, simplicity, cost-effectiveness, portability, selectivity, and ease of operation, especially for the determination of vanillin. Nanomaterials are a good candidate for sensor construction due to their commendable physicochemical attributes. Some advanced nanostructures with promising platforms for high-sensitivity, highly selective, and long-lasting electrochemical sensors include graphene (Gr) and its derivatives, graphite carbon nitride (g-C3N4), carbon nanotubes (CNTs), metal nanoparticles, metal organic frameworks, carbon nanofibers (CNFs) and quantum dots. Study about sizes, dimensions, and morphologies of nanomaterials makes strong candidates for improving sensitivity or selectivity according to electrocatalytic abilities. The low LOD and wide linear range of samples demonstrated an excellent catalytic performance towards the vanillin oxidation. Some investigations have reported the synergistic effects like great conductivity of carbon nanomaterials which improved the electrocatalytic performance of nanocomposites which demonstrated the estimable sensitivity of nanomaterial-supported electrochemical sensors for determination of vanillin concentrations. The sensors which have reported have a commendable response to practical potential and evaluated in biscuit, pudding powder, chocolate, custard specimens and etc. sensitivity, stability, reproducibility and repeatability of suggested sensor were investigated. The present review article scrutinizes recent advances in the fabrication of nanomaterial-based electrochemical sensors to detect vanillin in various food matrices.
Collapse
Affiliation(s)
- Omid Moradi
- Department of Chemistry, Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Salahuddin N, Awad S, Elfiky M. Vanillin-crosslinked chitosan/ZnO nanocomposites as a drug delivery system for 5-fluorouracil: study on the release behavior via mesoporous ZrO 2-Co 3O 4 nanoparticles modified sensor and antitumor activity. RSC Adv 2022; 12:21422-21439. [PMID: 35975070 PMCID: PMC9346502 DOI: 10.1039/d2ra02717h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/23/2022] [Indexed: 01/10/2023] Open
Abstract
Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM. Changing the weight% of ZnO NPs in the prepared NCs resulted in an improvement in their antibacterial activity against Gram-negative and Gram-positive bacteria strains compared with the unmodified CS, and the encapsulation efficiency of 5-fluorouracil (5-FU) was found to be in the range of 61.4–69.2%. Subsequently, the release of 5-FU was monitored utilizing the mesoporous ZrO2–Co3O4 NPs modified carbon paste sensor via the square-wave adsorptive anodic stripping voltammetry (SW-AdASV) technique. Also, the release mechanism of 5-FU from each NC was studied by applying the zero-order, first-order, Hixson–Crowell and Higuchi models to the experimental results. The cytotoxicity of prepared NCs and 5-FU-encapsulated NCs was evaluated against the HePG-2, MCF-7 and HCT-116 cancer cell lines, in addition to the WI-38 and WISH normal cell lines using the MTT assay. Notably, 5-FU/CV10 NC exhibited the highest antitumor activity towards all tested cancer cell lines and a moderate activity against WI-38 and WISH normal cell lines with IC50 values of 28.02 ± 2.5 and 31.65 ± 2.7 μg mL−1, respectively. The obtained nanocomposites exhibited suitable selectivity with minimum toxicity against normal cells. Herein, a series of vanillin-crosslinked chitosan (Vn-CS) nanocomposites (NCs) containing various contents of ZnO nanoparticles (NPs) was prepared and characterized via FTIR spectroscopy, XRD, TGA, SEM and TEM.![]()
Collapse
Affiliation(s)
| | - Salem Awad
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| | - Mona Elfiky
- Chemistry Department, Faculty of Science Tanta 31527 Egypt
| |
Collapse
|
9
|
Abstract
Healthcare is undergoing large transformations, and it is imperative to leverage new technologies to support the advent of personalized medicine and disease prevention. It is now well accepted that the levels of certain biological molecules found in blood and other bodily fluids, as well as in exhaled breath, are an indication of the onset of many human diseases and reflect the health status of the person. Blood, urine, sweat, or saliva biomarkers can therefore serve in early diagnosis of diseases such as cancer, but also in monitoring disease progression, detecting metabolic disfunctions, and predicting response to a given therapy. For most point-of-care sensors, the requirement that patients themselves can use and apply them is crucial not only regarding the diagnostic part, but also at the sample collection level. This has stimulated the development of such diagnostic approaches for the non-invasive analysis of disease-relevant analytes. Considering these timely efforts, this review article focuses on novel, sensitive, and selective sensing systems for the detection of different endogenous target biomarkers in bodily fluids as well as in exhaled breath, which are associated with human diseases.
Collapse
|
10
|
Fullerene-MWCNT nanostructured-based electrochemical sensor for the detection of Vanillin as food additive. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
11
|
Tajik S, Beitollahi H, Nejad FG, Safaei M, Zhang K, Van Le Q, Varma RS, Jang HW, Shokouhimehr M. Developments and applications of nanomaterial-based carbon paste electrodes. RSC Adv 2020; 10:21561-21581. [PMID: 35518767 PMCID: PMC9054518 DOI: 10.1039/d0ra03672b] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/27/2020] [Indexed: 01/22/2023] Open
Abstract
This review summarizes the progress that has been made in the past ten years in the field of electrochemical sensing using nanomaterial-based carbon paste electrodes. Following an introduction into the field, a first large section covers sensors for biological species and pharmaceutical compounds (with subsections on sensors for antioxidants, catecholamines and amino acids). The next section covers sensors for environmental pollutants (with subsections on sensors for pesticides and heavy metal ions). Several tables are presented that give an overview on the wealth of methods (differential pulse voltammetry, square wave voltammetry, amperometry, etc.) and different nanomaterials available. A concluding section summarizes the status, addresses future challenges, and gives an outlook on potential trends.
Collapse
Affiliation(s)
- Somayeh Tajik
- Research Center for Tropical and Infectious Diseases, Kerman University of Medical Sciences Kerman 7616913555 Iran
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Fariba Garkani Nejad
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Mohadeseh Safaei
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology Kerman Iran
| | - Kaiqiang Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 China
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
12
|
Development and application of a novel electrochemical sensor based on AuNPS and difunctional monomer-MIPs for the selective determination of Tetrabromobisphenol-S in water samples. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Murtada K, Moreno V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds - towards analytical approach. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Simultaneous detection of ofloxacin and lomefloxacin in milk by visualized microplate array. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
The Applications of Sensors and Biosensors in Investigating Drugs, Foods, and Nutraceuticals. SENSORS 2019; 19:s19153395. [PMID: 31382422 PMCID: PMC6696136 DOI: 10.3390/s19153395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/13/2019] [Indexed: 01/20/2023]
Abstract
The present Special Issue is focused on developing and applying several sensors, biosensor devices, and actuators for the analysis of drugs, foods, and nutraceuticals. Some applications concern classical topics, such as clostridium determination in dairy products, flavouring material in foods like ethylvanillin, or the antioxidant properties of fruit juices, while other applications are more innovative, such as food safety analysis, artificial human senses (electronic nose, or tongue) development, or ethanol determination in pharmaceutical drugs, or forensic purposes using catalytic fuel cell; and lastly, new studies devoted to intelligent food packaging. Therefore, this Special Issue should interest both specialists in the sector and readers who are simply curious, or are simply interested in innovations in the field of food and drug analysis.
Collapse
|
16
|
Lu L, Zhu Z, Hu X. Hybrid nanocomposites modified on sensors and biosensors for the analysis of food functionality and safety. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Furtado LDA, Gonçalves MCDO, Inocêncio CVM, Pinto EM, Martins DDL, Semaan FS. Electrodeposition of 4-Benzenesulfonic Acid onto a Graphite-Epoxy Composite Electrode for the Enhanced Voltammetric Determination of Caffeine in Beverages. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:8596484. [PMID: 30809415 PMCID: PMC6364101 DOI: 10.1155/2019/8596484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Caffeine is widely present in food and drinks, such as teas and coffees, being also part of some currently commercialized medicines, but despite its enhancement on several functions of human body, its exceeding use can promote many health problems. In order to develop new fast approaches for the caffeine sensing, graphite-epoxy composite electrodes (GECE) were used as substrate, being modified by different diazonium salts, synthetized as their tetraflouroborate salts. An analytical method for caffeine quantification was developed, using sware wave voltammetry (SWV) in Britton-Robinson buffer pH 2.0. Detection limits for bare electrode and 4-benzenesulfonic modified electrode were observed circa 145 µmol·L-1 and 1.3 µmol·L-1, respectively. The results have shown that the modification shifts the oxidation peaks to lower potential. Kinetics of the reaction limited by diffusion was more expressive when caffeine was added to the solution, resulting in decreases of impedance, characterized by lower R ct. All results for caffeine determination were compared to a reference chromatographic procedure (HPLC), showing no statistical difference. Analytical parameters for validation were suitably determined according to local legislation, leading to a linear behaviour from 5 to 150 µmol·L-1; precision of 4.09% was evaluated based on the RDC 166/17, and accuracy was evaluated in comparison with the reference method, with recovery of 98.37 ± 2.58%.
Collapse
Affiliation(s)
- Leonardo de A. Furtado
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Mariana C. de O. Gonçalves
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Carlos V. M. Inocêncio
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | | | - Daniela de L. Martins
- Grupo de Pesquisas em Catálise e Síntese (Laboratório 413), Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| | - Felipe S. Semaan
- Laboratório Aniy K. Ohara de Sensores Compósitos e Eletroanálise, Departamento de Química Analítica, Universidade Federal Fluminense, Campus do Valonguinho, Prédio do Instituto de Química, Centro, Niterói, RJ 24020-141, Brazil
| |
Collapse
|