1
|
Sun G, Kurosawa M, Ninomiya Y, Baba K, Son NH, Yen HT, Suzuki S, Kano Y. Contactless monitoring of respiratory rate variability in rats under anesthesia with a compact 24GHz microwave radar sensor. Front Vet Sci 2025; 12:1518140. [PMID: 40206262 PMCID: PMC11979124 DOI: 10.3389/fvets.2025.1518140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Objective The objective of this study was to develop and validate a noncontact monitoring system for respiratory rate variability in rats under anesthesia using a 24GHz microwave radar sensor. This study aimed to address the need for stress-free monitoring techniques that comply with the 3Rs principle (Reduction, Replacement, and Refinement) in laboratory animal settings. Methods Utilizing a 24GHz microwave radar sensor, this system detects subtle body surface displacements induced by respiratory movements in anesthetized rats. The setup includes a 24.05 to 24.25 GHz radar module coupled with a single-board computer, specifically Raspberry Pi, for signal acquisition and processing. The experiment involved four male Wistar rats tracking the variability in their respiratory rates at various isoflurane anesthesia depths to compare the radar system's performance with reference measurements. Results The radar system demonstrated high accuracy in respiratory rate monitoring, with a mean difference of 0.32 breaths per minute compared to laser references. The Pearson's correlation coefficient was high (0.89, p < 0.05), indicating a strong linear relationship between the radar and reference measurements. The system also accurately reflected changes in respiratory rates corresponding to different isoflurane anesthesia levels. Variations in respiratory rates were effectively mapped across different anesthesia levels, confirming the reliability and precision of the system for real-time monitoring. Conclusion The microwave radar-based monitoring system significantly enhanced the animal welfare and research methodology. This system minimizes animal stress and improves the integrity of physiological data in research settings by providing a non-invasive, accurate, and reliable means of monitoring respiratory rates.
Collapse
Affiliation(s)
- Guanghao Sun
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Masaki Kurosawa
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Yoshiki Ninomiya
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Kohei Baba
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Nguyen Huu Son
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| | - Hoang Thi Yen
- Faculty of Radio-Electronic Engineering, Le Quy Don Technical University, Hanoi, Vietnam
| | - Satoshi Suzuki
- Department of Mechanical Engineering, Kansai University, Osaka, Japan
| | - Yutaka Kano
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Japan
| |
Collapse
|
2
|
Bonafini BL, Breuer L, Ernst L, Tolba R, Oliveira LFD, Abreu de Souza M, Czaplik M, Pereira CB. Simultaneous, Non-Contact and Motion-Based Monitoring of Respiratory Rate in Sheep Under Experimental Condition Using Visible and Near-Infrared Videos. Animals (Basel) 2024; 14:3398. [PMID: 39682364 DOI: 10.3390/ani14233398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
The validation of methods for understanding the effects of many diseases and treatments requires the use of animal models in translational research. In this context, sheep have been employed extensively in scientific studies. However, the imposition of experimental conditions upon these animals may result in the experience of discomfort, pain, and stress. The ethical debates surrounding the use of animals in research have resulted in the adoption of Directive 2010/63/EU. The present study proposes a non-contact method for monitoring the respiration rate of sheep based on video processing. The Detecron2 model was trained to segment the sheep's body, abdominal, and facial regions in the video frames. A motion-tracking algorithm was developed to assess abdominal movement associated with the sheep's respiratory cycle. The method was applied to videos of Rhön sheep under experimental and housing conditions, utilising two types of cameras to assess the effectiveness of the proposed approach. The mean average error (MAE) obtained was 0.79 breaths/minute for the visible and 1.83 breaths/minute for the near-infrared (NIR) method. This study demonstrates the feasibility of video technology for simultaneous and non-invasive respiration monitoring, being a crucial parameter for assessing the health deterioration of multiple laboratory animals.
Collapse
Affiliation(s)
- Beatriz Leandro Bonafini
- Post Graduate Program in Technology in Health, Polytechnique School, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Lukas Breuer
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - René Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Mauren Abreu de Souza
- Post Graduate Program in Technology in Health, Polytechnique School, Pontifical Catholic University of Paraná, Curitiba 80215-901, Brazil
| | - Michael Czaplik
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Carina Barbosa Pereira
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
3
|
Wang C, Huang J, Wan X, Guo Z. A Review of Five Existing Hornet-Tracking Methods. INSECTS 2024; 15:601. [PMID: 39194806 DOI: 10.3390/insects15080601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Hornet is a general term for insects of the genus Vespa (Hymenoptera: Vespidae). Hornets are predatory insects distributed worldwide. They often appear at apiaries in groups to prey on honey bees, and cause incalculable losses in the honey bee industry. In the face of hornet intrusion, tracking a homing hornet to find its nest is the most efficient way to discover and eliminate the hornets around an apiary. Here, five hornet-tracking methods (hornet tag tracking, triangulation, thermal imaging technology, harmonic radar, and radio telemetry) are reviewed. The advantages, disadvantages and feasibility of each method are discussed to improve the strategies for tracking hornets. Therefore, this review provides ideas for the development of hornet-tracking technology and for improving honey bee protection.
Collapse
Affiliation(s)
- Chengzhi Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xia Wan
- Department of Ecology, School of Resources and Engineering, Anhui University, Hefei 230601, China
- Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei 230601, China
| | - Zhanbao Guo
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| |
Collapse
|
4
|
Neves MM, Guerra RF, de Lima IL, Arrais TS, Guevara-Vega M, Ferreira FB, Rosa RB, Vieira MS, Fonseca BB, Sabino da Silva R, da Silva MV. Perspectives of FTIR as Promising Tool for Pathogen Diagnosis, Sanitary and Welfare Monitoring in Animal Experimentation Models: A Review Based on Pertinent Literature. Microorganisms 2024; 12:833. [PMID: 38674777 PMCID: PMC11052489 DOI: 10.3390/microorganisms12040833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, there is a wide application in the literature of the use of the Fourier Transform Infrared Spectroscopy (FTIR) technique. This basic tool has also proven to be efficient for detecting molecules associated with hosts and pathogens in infections, as well as other molecules present in humans and animals' biological samples. However, there is a crisis in science data reproducibility. This crisis can also be observed in data from experimental animal models (EAMs). When it comes to rodents, a major challenge is to carry out sanitary monitoring, which is currently expensive and requires a large volume of biological samples, generating ethical, legal, and psychological conflicts for professionals and researchers. We carried out a survey of data from the relevant literature on the use of this technique in different diagnostic protocols and combined the data with the aim of presenting the technique as a promising tool for use in EAM. Since FTIR can detect molecules associated with different diseases and has advantages such as the low volume of samples required, low cost, sustainability, and provides diagnostic tests with high specificity and sensitivity, we believe that the technique is highly promising for the sanitary and stress and the detection of molecules of interest of infectious or non-infectious origin.
Collapse
Affiliation(s)
- Matheus Morais Neves
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Renan Faria Guerra
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Isabela Lemos de Lima
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Thomas Santos Arrais
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Marco Guevara-Vega
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Flávia Batista Ferreira
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
| | - Rafael Borges Rosa
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| | - Mylla Spirandelli Vieira
- Faculty of Medicine, Maria Ranulfa Institute, Av. Vasconselos Costa 321, Uberlândia 38400-448, MG, Brazil;
| | | | - Robinson Sabino da Silva
- Innovation Center in Salivary Diagnostic and Nanotheranostics, Department of Physiology, Institute of Biomedical Sciences, Federal University of Uberlandia, Uberlândia 38408-100, MG, Brazil; (M.G.-V.); (R.S.d.S.)
| | - Murilo Vieira da Silva
- Biotechnology in Experimental Models Laboratory—LABME, Federal University of Uberlândia, Uberlândia 38405-330, MG, Brazil; (M.M.N.); (R.F.G.); (I.L.d.L.); (T.S.A.); (F.B.F.)
- Rodents Animal Facilities Complex, Federal University of Uberlandia, Uberlândia 38400-902, MG, Brazil;
| |
Collapse
|
5
|
Mösch L, Kunczik J, Breuer L, Merhof D, Gass P, Potschka H, Zechner D, Vollmar B, Tolba R, Häger C, Bleich A, Czaplik M, Pereira CB. Towards substitution of invasive telemetry: An integrated home cage concept for unobtrusive monitoring of objective physiological parameters in rodents. PLoS One 2023; 18:e0286230. [PMID: 37676867 PMCID: PMC10484458 DOI: 10.1371/journal.pone.0286230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023] Open
Abstract
This study presents a novel concept for a smart home cage design, tools, and software used to monitor the physiological parameters of mice and rats in animal-based experiments. The proposed system focuses on monitoring key clinical parameters, including heart rate, respiratory rate, and body temperature, and can also assess activity and circadian rhythm. As the basis of the smart home cage system, an in-depth analysis of the requirements was performed, including camera positioning, imaging system types, resolution, frame rates, external illumination, video acquisition, data storage, and synchronization. Two different camera perspectives were considered, and specific camera models, including two near-infrared and two thermal cameras, were selected to meet the requirements. The developed specifications, hardware models, and software are freely available via GitHub. During the first testing phase, the system demonstrated the potential of extracting vital parameters such as respiratory and heart rate. This technology has the potential to reduce the need for implantable sensors while providing reliable and accurate physiological data, leading to refinement and improvement in laboratory animal care.
Collapse
Affiliation(s)
- Lucas Mösch
- Department of Anaesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Janosch Kunczik
- Department of Anaesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Lukas Breuer
- Department of Anaesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Dorit Merhof
- Chair of Image Processing, Faculty of Computer and Data Science, Universität Regensburg, Regensburg, Bavaria, Germany
| | - Peter Gass
- Research Group Animal Models in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Baden Württemberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Munich, Bavaria, Germany
| | - Dietmar Zechner
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Centre Rostock, Rostock, Mecklenburg-Western Pomerania, Germany
| | - Brigitte Vollmar
- Rudolf-Zenker-Institute of Experimental Surgery, University Medical Centre Rostock, Rostock, Mecklenburg-Western Pomerania, Germany
| | - René Tolba
- Institute of Laboratory Animal Science, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Michael Czaplik
- Department of Anaesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| | - Carina Barbosa Pereira
- Department of Anaesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, North Rhine-Westphalia, Germany
| |
Collapse
|
6
|
Cohen S, Ho C. Review of Rat ( Rattus norvegicus), Mouse ( Mus musculus), Guinea pig ( Cavia porcellus), and Rabbit ( Oryctolagus cuniculus) Indicators for Welfare Assessment. Animals (Basel) 2023; 13:2167. [PMID: 37443965 DOI: 10.3390/ani13132167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
The monitoring and assessment of animals is important for their health and welfare. The appropriate selection of multiple, validated, and feasible welfare assessment indicators is required to effectively identify compromises or improvements to animal welfare. Animal welfare indicators can be animal or resource based. Indicators can be collated to form assessment tools (e.g., grimace scales) or animal welfare assessment models (e.g., 5 Domains) and frameworks (e.g., 5 Freedoms). The literature contains a wide variety of indicators, with both types needed for effective animal welfare assessment; however, there is yet to be an ideal constellation of indicators for animal-based welfare assessment in small mammals such as guinea pigs (Cavia Porcellus), mice (Mus musculus), rabbits (Oryctolagus cuniculus), and rats (Rattus norvegicus). A systematic review of grey and peer-reviewed literature was performed to determine the types of animal-based welfare indicators available to identify and assess animal health and welfare in these small mammals maintained across a wide variety of conditions. The available indicators were categorised and scored against a selection of criteria, including potential ease of use and costs. This review and analysis aim to provide the basis for further research into animal welfare indicators for these species. Future applications of this work may include improvements to animal welfare assessments or schemes, guiding better management, and implementing future strategies to enable better animal welfare.
Collapse
Affiliation(s)
- Shari Cohen
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
- School of Life and Environmental Sciences, University of Sydney, Camden 2570, Australia
| | - Cindy Ho
- Melbourne Veterinary School, Animal Welfare Science Centre, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
7
|
Wongsaengchan C, McCafferty DJ, Evans NP, McKeegan DEF, Nager RG. Body surface temperature of rats reveals both magnitude and sex differences in the acute stress response. Physiol Behav 2023; 264:114138. [PMID: 36871696 DOI: 10.1016/j.physbeh.2023.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Understanding how biological markers of stress relate to stressor magnitude is much needed and can be used in welfare assessment. Changes in body surface temperature can be measured using infrared thermography (IRT) as a marker of a physiological response to acute stress. While an avian study has shown that changes in body surface temperature can reflect the intensity of acute stress, little is known about surface temperature responses to stressors of different magnitudes and its sex-specificity in mammals, and how they correlate with hormonal and behavioural responses. We used IRT to collect continuous surface temperature measurements of tail and eye of adult male and female rats (Rattus norvegicus), for 30 minutes after exposure to one of three stressors (small cage, encircling handling or rodent restraint cone) for one minute, and cross-validated the thermal response with plasma corticosterone (CORT) and behavioural assessment. To obtain individual baseline temperatures and thermal responses to stress, rats were imaged in a test arena (to which they were habituated) for 30 seconds before and 30 minutes after being exposed to the stressor. In response to the three stressors, tail temperature initially decreased and then recovered to, or overshot the baseline temperature. Tail temperature dynamics differed between stressors; being restrained in the small cage was associated with the smallest drop in temperature, in male rats, and the fastest thermal recovery, in both sexes. Increases in eye temperature only distinguished between stressors early in the response and only in females. The post stressor increase in eye temperature was greater in the right eye of males and the left eye of females. In both sexes encircling may have been associated with the fastest increase in CORT. These results were in line with observed behavioural changes, with greater movement in rats exposed to the small cage and higher immobility after encircling. The female tail and eye temperature, as well as the CORT concentrations did not return to pre-stressor levels in the observation period, in conjunction with the greater occurrence of escape-related behaviours in female rats. These results suggest that female rats are more vulnerable to acute restraint stress compared to male rats and emphasise the importance of using both sexes in future investigations of stressor magnitude. This study demonstrates that acute stress induced changes in mammalian surface temperature measured with IRT relate to the magnitude of restraint stress, indicate sex differences and correlate with hormonal and behavioural responses. Thus, IRT has the potential to become a non-invasive method of continuous welfare assessment in unrestrained mammals.
Collapse
Affiliation(s)
- Chanakarn Wongsaengchan
- School of Psychology & Neuroscience, University of St Andrews, St Andrews, KY16 9JP, United Kingdom
| | - Dominic J McCafferty
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Scottish Centre for Ecology and the Natural Environment, Rowardennan, G63 0AW, United Kingdom
| | - Neil P Evans
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Dorothy E F McKeegan
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Jarrett Building, Glasgow, G61 1QH, United Kingdom
| | - Ruedi G Nager
- School of Biodiversity, One Health & Veterinary Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
8
|
Oliver VL, Pang DSJ. Pain Recognition in Rodents. Vet Clin North Am Exot Anim Pract 2023; 26:121-149. [PMID: 36402478 DOI: 10.1016/j.cvex.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Available methods for recognizing and assessing pain in rodents have increased over the last 10 years, including the development of validated pain assessment scales. Much of this work has been driven by the needs of biomedical research, and there are specific challenges to applying these scales in the clinical environment. This article provides an introduction to pain assessment scale validation, reviews current methods of pain assessment, highlighting their strengths and weaknesses, and makes recommendations for assessing pain in a clinical environment.
Collapse
Affiliation(s)
- Vanessa L Oliver
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada; Animal Health Unit, VP Research, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada
| | - Daniel S J Pang
- Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, Alberta, T2N 4Z6, Canada; Department of Clinical Sciences, Faculty of Veterinary Medicine, Université de Montréal, Québec, Canada.
| |
Collapse
|
9
|
Oliveira RG, Correia PMM, Silva ALM, Encarnação PMCC, Ribeiro FM, Castro IF, Veloso JFCA. Development of a New Integrated System for Vital Sign Monitoring in Small Animals. SENSORS 2022; 22:s22114264. [PMID: 35684885 PMCID: PMC9185494 DOI: 10.3390/s22114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 01/25/2023]
Abstract
Monitoring the vital signs of mice is an essential practice during imaging procedures to avoid populational losses and improve image quality. For this purpose, a system based on a set of devices (piezoelectric sensor, optical module and thermistor) able to detect the heart rate, respiratory rate, body temperature and arterial blood oxygen saturation (SpO2) in mice anesthetized with sevoflurane was implemented. Results were validated by comparison with the reported literature on similar anesthetics. A new non-invasive electrocardiogram (ECG) module was developed, and its first results reflect the viability of its integration in the system. The sensors were strategically positioned on mice, and the signals were acquired through a custom-made printed circuit board during imaging procedures with a micro-PET (Positron Emission Tomography). For sevoflurane concentration of 1.5%, the average values obtained were: 388 bpm (beats/minute), 124 rpm (respirations/minute) and 88.9% for the heart rate, respiratory rate and SpO2, respectively. From the ECG information, the value obtained for the heart rate was around 352 bpm for injectable anesthesia. The results compare favorably to the ones established in the literature, proving the reliability of the proposed system. The ECG measurements show its potential for mice heart monitoring during imaging acquisitions and thus for integration into the developed system.
Collapse
Affiliation(s)
- Regina G. Oliveira
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Pedro M. M. Correia
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
- Correspondence:
| | - Ana L. M. Silva
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Pedro M. C. C. Encarnação
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Fabiana M. Ribeiro
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| | - Ismael F. Castro
- Radiation Imaging Technologies Lda. (RI-TE), University of Aveiro Incubator, PCI—Creative Science Park, 3830-352 Ílhavo, Portugal;
| | - João F. C. A. Veloso
- Institute for Nanostructures, Nanomodelling and Nanofabrication (i3N), Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal; (R.G.O.); (A.L.M.S.); (P.M.C.C.E.); (F.M.R.); (J.F.C.A.V.)
| |
Collapse
|
10
|
Verduzco-Mendoza A, Bueno-Nava A, Wang D, Martínez-Burnes J, Olmos-Hernández A, Casas A, Domínguez A, Mota-Rojas D. Experimental Applications and Factors Involved in Validating Thermal Windows Using Infrared Thermography to Assess the Health and Thermostability of Laboratory Animals. Animals (Basel) 2021; 11:3448. [PMID: 34944225 PMCID: PMC8698170 DOI: 10.3390/ani11123448] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Evaluating laboratory animals' health and thermostability are fundamental components of all experimental designs. Alterations in either one of these parameters have been shown to trigger physiological changes that can compromise the welfare of the species and the replicability and robustness of the results obtained. Due to the nature and complexity of evaluating and managing the species involved in research protocols, non-invasive tools such as infrared thermography (IRT) have been adopted to quantify these parameters without altering them or inducing stress responses in the animals. IRT technology makes it possible to quantify changes in surface temperatures that are derived from alterations in blood flow that can result from inflammatory, stressful, or pathological processes; changes can be measured in diverse regions, called thermal windows, according to their specific characteristics. The principal body regions that were employed for this purpose in laboratory animals were the orbital zone (regio orbitalis), auricular pavilion (regio auricularis), tail (cauda), and the interscapular area (regio scapularis). However, depending on the species and certain external factors, the sensitivity and specificity of these windows are still subject to controversy due to contradictory results published in the available literature. For these reasons, the objectives of the present review are to discuss the neurophysiological mechanisms involved in vasomotor responses and thermogenesis via BAT in laboratory animals and to evaluate the scientific usefulness of IRT and the thermal windows that are currently used in research involving laboratory animals.
Collapse
Affiliation(s)
- Antonio Verduzco-Mendoza
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana, Mexico City 04960, Mexico;
| | - Antonio Bueno-Nava
- División of Neurosciences, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, (INR-LGII), Mexico City 14389, Mexico;
| | - Dehua Wang
- School of Life Sciences, Shandong University, Qingdao 266237, China;
| | - Julio Martínez-Burnes
- Animal Health Group, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico;
| | - Adriana Olmos-Hernández
- Division of Biotechnology—Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Alejandro Casas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Adriana Domínguez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico; (A.C.); (A.D.)
| |
Collapse
|
11
|
Makowska IJ, Weary DM. A Good Life for Laboratory Rodents? ILAR J 2021; 60:373-388. [PMID: 32311030 DOI: 10.1093/ilar/ilaa001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/16/2019] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Most would agree that animals in research should be spared "unnecessary" harm, pain, or distress, and there is also growing interest in providing animals with some form of environmental enrichment. But is this the standard of care that we should aspire to? We argue that we need to work towards a higher standard-specifically, that providing research animals with a "good life" should be a prerequisite for their use. The aims of this paper are to illustrate our vision of a "good life" for laboratory rats and mice and to provide a roadmap for achieving this vision. We recognize that several research procedures are clearly incompatible with a good life but describe here what we consider to be the minimum day-to-day living conditions to be met when using rodents in research. A good life requires that animals can express a rich behavioral repertoire, use their abilities, and fulfill their potential through active engagement with their environment. In the first section, we describe how animals could be housed for these requirements to be fulfilled, from simple modifications to standard housing through to better cage designs and free-ranging options. In the second section, we review the types of interactions with laboratory rodents that are compatible with a good life. In the third section, we address the potential for the animals to have a life outside of research, including the use of pets in clinical trials (the animal-as-patient model) and the adoption of research animals to new homes when they are no longer needed in research. We conclude with a few suggestions for achieving our vision.
Collapse
Affiliation(s)
- I Joanna Makowska
- Animal Welfare Program, University of British Columbia, Vancouver, Canada.,Animal Welfare Institute, Washington, DC, USA
| | - Daniel M Weary
- Animal Welfare Program, University of British Columbia, Vancouver, Canada
| |
Collapse
|
12
|
Nunamaker EA, Davis S, O’Malley CI, Turner PV. Developing Recommendations for Cumulative Endpoints and Lifetime Use for Research Animals. Animals (Basel) 2021; 11:ani11072031. [PMID: 34359161 PMCID: PMC8300189 DOI: 10.3390/ani11072031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Research animals are important for scientific advancement, and therefore, their long-term welfare needs to be monitored to not only minimize suffering, but to provide positive affective states and experiences. Currently, there is limited guidance in countries around the world on cumulative and experimental endpoints. This paper aims to explore current opinions and institutional strategies regarding cumulative use and endpoints through a scoping survey and review of current regulations and welfare assessment tools, and ultimately to provide recommendations for assessment of cumulative and lifetime use of research animals. The survey found that only 36% of respondents indicated that their institution had cumulative use endpoint policies in place, but these policies may be informal and/or vary by species. Most respondents supported more specific guidelines but expressed concerns about formal policies that may limit their ability to make case-by-case decisions. The wide diversity in how research animals are used makes it difficult for specific policies to be implemented. Endpoint decisions should be made in an objective manner using standardized welfare assessment tools. Future research should focus on robust, efficient welfare assessment tools that can be used to support planning and recommendations for cumulative endpoints and lifetime use of research and teaching animals.
Collapse
Affiliation(s)
- Elizabeth A. Nunamaker
- Animal Care Services, University of Florida, 1600 Archer Rd, Gainesville, FL 32610, USA;
| | - Shawn Davis
- Animal Care Services, Brock University, 1812 Sir Isaac Brock Way, St Catherines, ON L2S 3A1, Canada;
| | - Carly I. O’Malley
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA
| | - Patricia V. Turner
- Global Animal Welfare and Training, Charles River Laboratories, Wilmington, MA 01887, USA
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
13
|
An Anatomical Thermal 3D Model in Preclinical Research: Combining CT and Thermal Images. SENSORS 2021; 21:s21041200. [PMID: 33572091 PMCID: PMC7915503 DOI: 10.3390/s21041200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Even though animal trials are a controversial topic, they provide knowledge about diseases and the course of infections in a medical context. To refine the detection of abnormalities that can cause pain and stress to the animal as early as possible, new processes must be developed. Due to its noninvasive nature, thermal imaging is increasingly used for severity assessment in animal-based research. Within a multimodal approach, thermal images combined with anatomical information could be used to simulate the inner temperature profile, thereby allowing the detection of deep-seated infections. This paper presents the generation of anatomical thermal 3D models, forming the underlying multimodal model in this simulation. These models combine anatomical 3D information based on computed tomography (CT) data with a registered thermal shell measured with infrared thermography. The process of generating these models consists of data acquisition (both thermal images and CT), camera calibration, image processing methods, and structure from motion (SfM), among others. Anatomical thermal 3D models were successfully generated using three anesthetized mice. Due to the image processing improvement, the process was also realized for areas with few features, which increases the transferability of the process. The result of this multimodal registration in 3D space can be viewed and analyzed within a visualization tool. Individual CT slices can be analyzed axially, sagittally, and coronally with the corresponding superficial skin temperature distribution. This is an important and successfully implemented milestone on the way to simulating the internal temperature profile. Using this temperature profile, deep-seated infections and inflammation can be detected in order to reduce animal suffering.
Collapse
|
14
|
Nosrati Z, Bergamo M, Rodríguez-Rodríguez C, Saatchi K, Häfeli UO. Refinement and validation of infrared thermal imaging (IRT): a non-invasive technique to measure disease activity in a mouse model of rheumatoid arthritis. Arthritis Res Ther 2020; 22:281. [PMID: 33256854 PMCID: PMC7708919 DOI: 10.1186/s13075-020-02367-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background The discovery and development of new medicines requires high-throughput screening of possible therapeutics in a specific model of the disease. Infrared thermal imaging (IRT) is a modern assessment method with extensive clinical and preclinical applications. Employing IRT in longitudinal preclinical setting to monitor arthritis onset, disease activity and therapeutic efficacies requires a standardized framework to provide reproducible quantitative data as a precondition for clinical studies. Methods Here, we established the accuracy and reliability of an inexpensive smartphone connected infrared (IR) camera against known temperature objects as well as certified blackbody calibration equipment. An easy to use protocol incorporating contactless image acquisition and computer-assisted data analysis was developed to detect disease-related temperature changes in a collagen-induced arthritis (CIA) mouse model and validated by comparison with two conventional methods, clinical arthritis scoring and paw thickness measurement. We implemented IRT to demonstrate the beneficial therapeutic effect of nanoparticle drug delivery versus free methotrexate (MTX) in vivo. Results The calibrations revealed high accuracy and reliability of the IR camera for detecting temperature changes in the rheumatoid arthritis animal model. Significant positive correlation was found between temperature changes and paw thickness measurements as the disease progressed. IRT was found to be superior over the conventional techniques specially at early arthritis onset, when it is difficult to observe subclinical signs and measure structural changes. Conclusion IRT proved to be a valid and unbiased method to detect temperature changes and quantify the degree of inflammation in a rapid and reproducible manner in longitudinal preclinical drug efficacy studies.
Collapse
Affiliation(s)
- Zeynab Nosrati
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Marta Bergamo
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada.
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, British Columbia, V6T 1Z3, Canada. .,Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen, Denmark.
| |
Collapse
|
15
|
Kwon HM, Ikeda K, Kim SH, Thiele RH. Non-contact thermography-based respiratory rate monitoring in a post-anesthetic care unit. J Clin Monit Comput 2020; 35:1291-1297. [PMID: 32975639 PMCID: PMC7516248 DOI: 10.1007/s10877-020-00595-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/18/2020] [Indexed: 11/24/2022]
Abstract
In patients at high risk of respiratory complications, pulse oximetry may not adequately detect hypoventilation events. Previous studies have proposed using thermography, which relies on infrared imaging, to measure respiratory rate (RR). These systems lack support from real-world feasibility testing for widespread acceptance. This study enrolled 101 spontaneously ventilating patients in a post-anesthesia recovery unit. Patients were placed in a 45° reclined position while undergoing pulse oximetry and bioimpedance-based RR monitoring. A thermography camera was placed approximately 1 m from the patient and pointed at the patient’s face, recording continuously at 30 frames per second for 2 min. Simultaneously, RR was manually recorded. Offline imaging analysis identified the nares as a region of interest and then quantified nasal temperature changes frame by frame to estimate RR. The manually calculated RR was compared with both bioimpedance and thermographic estimates. The Pearson correlation coefficient between direct measurement and bioimpedance was 0.69 (R2 = 0.48), and that between direct measurement and thermography was 0.95 (R2 = 0.90). Limits of agreement analysis revealed a bias of 1.3 and limits of agreement of 10.8 (95% confidence interval 9.07 to 12.5) and − 8.13 (− 6.41 to − 9.84) between direct measurements and bioimpedance, and a bias of −0.139 and limits of agreement of 2.65 (2.14 to 3.15) and − 2.92 (− 2.41 to 3.42) between direct measurements and thermography. Thermography allowed tracking of the manually measured RR in the post-anesthesia recovery unit without requiring patient contact. Additional work is required for image acquisition automation and nostril identification.
Collapse
Affiliation(s)
- Hye-Mee Kwon
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea
| | - Keita Ikeda
- Department of Anesthesiology and Pain Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Sung-Hoon Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, 05505, Seoul, Korea.
| | - Robert H Thiele
- Department of Anesthesiology and Pain Medicine, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
16
|
Karino G, Senoo A, Kunikata T, Kamei Y, Yamanouchi H, Nakamura S, Shukuya M, Colman RJ, Koshiba M. Inexpensive Home Infrared Living/Environment Sensor with Regional Thermal Information for Infant Physical and Psychological Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17186844. [PMID: 32961676 PMCID: PMC7559736 DOI: 10.3390/ijerph17186844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
The use of home-based image sensors for biological and environmental monitoring provides novel insight into health and development but it is difficult to evaluate people during their normal activities in their home. Therefore, we developed a low-cost infrared (IR) technology-based motion, location, temperature and thermal environment detection system that can be used non-invasively for long-term studies in the home environment. We tested this technology along with the associated analysis algorithm to visualize the effects of parental care and thermal environment on developmental state change in a non-human primate model, the common marmoset (Callithrix jacchus). To validate this system, we first compared it to a manual analysis technique and we then assessed the development of circadian rhythms in common marmosets from postnatal day 15–45. The semi-automatically tracked biological indices of locomotion velocity (BV) and body surface temperature (BT) and the potential psychological index of place preference toward the door (BD), showed age-dependent shifts in circadian phase patterns. Although environmental variables appeared to affect circadian rhythm development, principal component analysis and signal superimposing imaging methods revealed a novel phasic pattern of BD-BT correlation day/night switching in animals older than postnatal day 38 (approximately equivalent to one year of age in humans). The origin of this switch was related to earlier development of body temperature (BT) rhythms and alteration of psychological behavior rhythms (BD) around earlier feeding times. We propose that this cost-effective, inclusive sensing and analytic technique has value for understanding developmental care conditions for which continual home non-invasive monitoring would be beneficial and further suggest the potential to adapt this technique for use in humans.
Collapse
Affiliation(s)
- Genta Karino
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Aya Senoo
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Tetsuya Kunikata
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Yoshimasa Kamei
- Department of Obstetrics and Gynecology, Saitama Medical University, Saitama 350-0495, Japan;
| | - Hideo Yamanouchi
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
| | - Shun Nakamura
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
| | - Masanori Shukuya
- Faculty of Environmental Studies Department of Restoration Ecology and Built Environment, Tokyo City University, Kanagawa 224-8551, Japan;
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53715, USA
- Department of Cell & Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
- Correspondence: (R.J.C.); (M.K.)
| | - Mamiko Koshiba
- Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; (G.K.); (A.S.); (S.N.)
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan; (T.K.); (H.Y.)
- Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 755-8611, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
- Correspondence: (R.J.C.); (M.K.)
| |
Collapse
|
17
|
Mota-Rojas D, Olmos-Hernández A, Verduzco-Mendoza A, Lecona-Butrón H, Martínez-Burnes J, Mora-Medina P, Gómez-Prado J, Orihuela A. Infrared thermal imaging associated with pain in laboratory animals. Exp Anim 2020; 70:1-12. [PMID: 32848100 PMCID: PMC7887630 DOI: 10.1538/expanim.20-0052] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The science of animal welfare has evolved over the years, and recent scientific advances
have enhanced our comprehension of the neurological, physiological, and ethological
mechanisms of diverse animal species. Currently, the study of the affective states
(emotions) of nonhuman animals is attracting great scientific interest focused primarily
on negative experiences such as pain, fear, and suffering, which animals experience in
different stages of their lives or during scientific research. Studies underway today seek
to establish methods of evaluation that can accurately measure pain and then develop
effective treatments for it, because the techniques available up to now are not
sufficiently precise. One innovative technology that has recently been incorporated into
veterinary medicine for the specific purpose of studying pain in animals is called
infrared thermography (IRT), a technique that works by detecting and measuring levels of
thermal radiation at different points on the body’s surface with high sensitivity. Changes
in IRT images are associated mainly with blood perfusion, which is modulated by the
mechanisms of vasodilatation and vasoconstriction. IRT is an efficient, noninvasive method
for evaluating and controlling pain, two critical aspects of animal welfare in biomedical
research. The aim of the present review is to compile and analyze studies of infrared
thermographic changes associated with pain in laboratory research involving animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behaviour and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco, Mexico City, C.P. 04960 Mexico
| | - Adriana Olmos-Hernández
- Division of Biotechnology, Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, C.P. 14389, Mexico
| | - Antonio Verduzco-Mendoza
- Division of Biotechnology, Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, C.P. 14389, Mexico
| | - Hugo Lecona-Butrón
- Division of Biotechnology, Department Bioterio and Experimental Surgery, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra (INR-LGII), Mexico City, C.P. 14389, Mexico
| | - Julio Martínez-Burnes
- Graduate and Research Department, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, C.P. Victoria City, Tamaulipas, C.P. 87000, Mexico
| | - Patricia Mora-Medina
- Livestock Science Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), State of Mexico, C.P. 54740, Mexico
| | - Jocelyn Gómez-Prado
- Neurophysiology, Behaviour and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco, Mexico City, C.P. 04960 Mexico
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, C.P. 62209, México
| |
Collapse
|
18
|
Xu Z, Wang Q, Li D, Hu M, Yao N, Zhai G. Estimating Departure Time Using Thermal Camera and Heat Traces Tracking Technique. SENSORS 2020; 20:s20030782. [PMID: 32023963 PMCID: PMC7038398 DOI: 10.3390/s20030782] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/18/2022]
Abstract
Advancement in science and technology is playing an increasingly important role in solving difficult cases at present. Thermal cameras can help the police crack difficult cases by capturing the heat trace on the ground left by perpetrators, which cannot be spotted by the naked eye. Therefore, the purpose of this study is to establish a thermalfoot model using thermal imaging system to estimate the departure time. To this end, in the current work, we use a thermal camera to acquire the thermal sequence left on the floor, and convert it into the heat signal via image processing algorithm. We establish the model of thermalfoot print as we observe that the residual temperature would exponentially decrease with the departure time according to Newton’s Law of Cooling. The correlation coefficients of 107 thermalfoot models derived from the corresponding 107 heat signals are basically above 0.99. In a validation experiment, a residual analysis is conducted and the residuals between estimated departure time points and ground-truth times are almost within a certain range from −150 s to +150 s. The reverse accuracy of the thermalfoot model for estimating departure time at one-third, one-half, two-thirds, three-fourths, four-fifths, and five-sixths capture time points are 71.96%, 50.47%, 42.06%, 31.78%, 21.70%, and 11.21%, respectively. The results of comparison experiments with two subjective evaluation methods (subjective 1: we directly estimate the departure time according to obtained local curves; subjective 2: we utilize auxiliary means such as a ruler to estimate the departure time based on obtained local curves) further demonstrate the effectiveness of thermalfoot model for detecting the departure time inversely. Experimental results also demonstrated that the thermalfoot model has good performance on the departure time reversal within a short time window someone leaves, whereas it is probably only approximately 15% to accurately determine the departure time via thermalfoot model within a long time window someone leaves. The influence of outliers, ROI (Region of Interest) selection, ROI size, different capture time points and environment temperature on the performance of thermalfoot model on departure time reversal can be explored in the future work. Overall, the thermalfoot model can help the police solve crimes to some extent, which in turn brings more guarantees for people’s health, social security, and stability.
Collapse
Affiliation(s)
- Ziyi Xu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China; (Z.X.); (Q.W.)
- School of Statistics, East China Normal University, Shanghai 200241, China
| | - Quchao Wang
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China; (Z.X.); (Q.W.)
- School of Mathematical Sciences, East China Normal University, Shanghai 200241, China
| | - Duo Li
- Hangzhou HIKVISION Digital Technology Co., LTO., Hangzhou 310051, China;
- Institute of Image Communication and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Menghan Hu
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China; (Z.X.); (Q.W.)
- Key Laboratory of Artificial Intelligence, Ministry of Education, Shanghai 200240, China
- Correspondence: ; Tel.: +86-021-54345196
| | - Nan Yao
- Shanghai Jianglai Data Technology Co., Ltd, Shanghai 200241, China;
| | - Guangtao Zhai
- Institute of Image Communication and Information Processing, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
19
|
Kunczik J, Pereira CB, Wassermann L, Hager C, Bleich A, Zieglowski L, Tolba R, Czaplik M. Contactless Anesthesia Monitoring in Spontanously Breathing Rodents. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6077-6080. [PMID: 31947231 DOI: 10.1109/embc.2019.8856869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Laboratory animal science plays a crucial role in medical and biological research. In the last decades, stricter regulations were enforced to safeguard laboratory animals. Following the "3Rs" guiding principles, animal trials should be replaced, reduced and refined, whenever possible.A contactless modality capable of assessing the respiratory rate (RR) and additional breath related characteristics can potentially refine anesthetic interventions in rodents by continuously monitoring their anesthetic depth. This can reduce complications and thus the number of needed animals.We were able to extract the instantaneous RR in rodents with a sum squared error (SSE) of 0.26 breaths/min from color video. A correlation of 0.9781 compared to an Electrocardiography (ECG) based reference was achieved. Furthermore, additional temporal and morphological characteristics were extracted, which are sensitive for changes in the anesthetic depth.
Collapse
|
20
|
Modelling and Validation of Computer Vision Techniques to Assess Heart Rate, Eye Temperature, Ear-Base Temperature and Respiration Rate in Cattle. Animals (Basel) 2019; 9:ani9121089. [PMID: 31817620 PMCID: PMC6940919 DOI: 10.3390/ani9121089] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/29/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Animal monitoring normally requires procedures that are time- and labour-consuming. The implementation of novel non-invasive technologies could be a good approach to monitor animal health and welfare. This study aimed to evaluate the use of images and computer-based methods to track specific features of the face and to assess temperature; respiration rate and heart rate in cattle. The measurements were compared with measures obtained with conventional methods during the same time period. The data were collected from ten dairy cows that were recorded during six handling procedures across two consecutive days. The results from this study show over 92% of accuracy from the computer algorithm that was developed to track the areas selected on the videos collected. In addition, acceptable correlation was observed between the temperature calculated from thermal infrared images and temperature collected using intravaginal loggers. Moreover, there was acceptable correlation between the respiration rate calculated from infrared videos and from visual observation. Furthermore, a low to high relationship was found between the heart rate obtained from videos and from attached monitors. The study also showed that both the position of the cameras and the area analysed on the images are very important, as both had large impact on the accuracy of the methods. The positive outcomes and the limitations observed in this study suggest the need for further research Abstract Precision livestock farming has emerged with the aim of providing detailed information to detect and reduce problems related to animal management. This study aimed to develop and validate computer vision techniques to track required features of cattle face and to remotely assess eye temperature, ear-base temperature, respiration rate, and heart rate in cattle. Ten dairy cows were recorded during six handling procedures across two consecutive days using thermal infrared cameras and RGB (red, green, blue) video cameras. Simultaneously, core body temperature, respiration rate and heart rate were measured using more conventional ‘invasive’ methods to be compared with the data obtained with the proposed algorithms. The feature tracking algorithm, developed to improve image processing, showed an accuracy between 92% and 95% when tracking different areas of the face of cows. The results of this study also show correlation coefficients up to 0.99 between temperature measures obtained invasively and those obtained remotely, with the highest values achieved when the analysis was performed within individual cows. In the case of respiration rate, a positive correlation (r = 0.87) was found between visual observations and the analysis of non-radiometric infrared videos. Low to high correlation coefficients were found between the heart rates (0.09–0.99) obtained from attached monitors and from the proposed method. Furthermore, camera location and the area analysed appear to have a relevant impact on the performance of the proposed techniques. This study shows positive outcomes from the proposed computer vision techniques when measuring physiological parameters. Further research is needed to automate and improve these techniques to measure physiological changes in farm animals considering their individual characteristics.
Collapse
|
21
|
Barbosa Pereira C, Dohmeier H, Kunczik J, Hochhausen N, Tolba R, Czaplik M. Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared thermography. PLoS One 2019; 14:e0224747. [PMID: 31693688 PMCID: PMC6834247 DOI: 10.1371/journal.pone.0224747] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 01/16/2023] Open
Abstract
Pig experiments have played an important role in medical breakthroughs during the last century. In fact, pigs are one of the major animal species used in translational research, surgical models and procedural training due to their anatomical and physiological similarities to humans. To ensure high bioethical standards in animal trials, new directives have been implemented, among others, to refine the procedures and minimize animals' stress and pain. This paper presents a contactless motion-based approach for monitoring cardiorespiratory signals (heart rate and respiratory rate) in anesthetized pigs using infrared thermography. Heart rate monitoring is estimated by measuring the vibrations (precordial motion) of the chest caused by the heartbeat. Respiratory rate, in turn, is computed by measuring the mechanical chest movements that accompany the respiratory cycle. To test the feasibility of this approach, thermal videos of 17 anesthetized pigs were acquired and analyzed. A high agreement between infrared thermography and a gold standard (electrocardiography and capnography-derived respiratory rate) was achieved. The mean absolute error averaged 3.43 ± 3.05 bpm and 0.27 ± 0.48 breaths/min for heart rate and respiratory rate, respectively. In sum, infrared thermography is capable of assessing cardiorespiratory signals in pigs. Future work should be conducted to evaluate infared thermography capability of capturing information for long term monitoring of research animals in a diverse set of facilities.
Collapse
Affiliation(s)
- Carina Barbosa Pereira
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
- * E-mail:
| | - Henriette Dohmeier
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
| | - Janosch Kunczik
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
| | - Nadine Hochhausen
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
| | - Michael Czaplik
- Department of Anesthesiology, Faculty of Medicine, RWTH Aachen University, Aachen, NRW, Germany
| |
Collapse
|
22
|
Kunczik J, Barbosa Pereira C, Zieglowski L, Tolba R, Wassermann L, Häger C, Bleich A, Janssen H, Thum T, Czaplik M. Remote vitals monitoring in rodents using video recordings. BIOMEDICAL OPTICS EXPRESS 2019; 10:4422-4436. [PMID: 31565499 PMCID: PMC6757452 DOI: 10.1364/boe.10.004422] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
Laboratory animal research was always crucial for scientific breakthroughs in the fields of medicine and biology. Animal trials offer insights into various disease mechanisms, genetics, drug therapy and the effect of different external factors onto living organisms. However, conducting animal trials is highly controversial. To ensure high ethical standards, a number of directives have been adopted in the European Union, which seek to replace, reduce and refine animal trials. Hence, severity assessment plays an important role in today's laboratory animal research. Currently, severity of trials is assessed by highly rater dependent scoring systems. In this paper, we propose a method for unobtrusive, automated and contactless measurement of respiratory rate (RR) and heart rate (HR). We were able to extract RR and HR with an high agreement between our method and a contact-based reference method. The Root Mean Squared Error (RMSE) averaged 0.32 ± 0.11 breaths/min for RR and 1.28 ± 0.62 beats/min for HR in rats, respectively. In mice, the RMSE averaged 1.42 ± 0.97 breaths/min for RR and 1.36 ± 0.87 beats/min, respectively. In the future, these parameters can be used for new, objective scoring systems, which are not susceptible to inter-rater variability.
Collapse
Affiliation(s)
- Janosch Kunczik
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Carina Barbosa Pereira
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Leonie Zieglowski
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| | - Laura Wassermann
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Heike Janssen
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Excellence Cluster REBIRTH, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Michael Czaplik
- Department of Anesthesiology, RWTH Aachen University, Faculty of Medicine, Aachen, Germany
| |
Collapse
|
23
|
Pereira CB, Kunczik J, Bleich A, Haeger C, Kiessling F, Thum T, Tolba R, Lindauer U, Treue S, Czaplik M. Perspective review of optical imaging in welfare assessment in animal-based research. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31286726 PMCID: PMC6995877 DOI: 10.1117/1.jbo.24.7.070601] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
To refine animal research, vital signs, activity, stress, and pain must be monitored. In chronic studies, some measures can be assessed using telemetry sensors. Although this methodology provides high-precision data, an initial surgery for device implantation is necessary, potentially leading to stress, wound infections, and restriction of motion. Recently, camera systems have been adapted for animal research. We give an overview of parameters that can be assessed using imaging in the visible, near-infrared, and thermal spectrum of light. It focuses on heart activity, respiration, oxygen saturation, and motion, as well as on wound analysis. For each parameter, we offer recommendations on the minimum technical requirements of appropriate systems, regions of interest, and light conditions, among others. In general, these systems demonstrate great performance. For heart and respiratory rate, the error was <4 beats / min and 5 breaths/min. Furthermore, the systems are capable of tracking animals during different behavioral tasks. Finally, studies indicate that inhomogeneous temperature distribution around wounds might be an indicator of (pending) infections. In sum, camera-based techniques have several applications in animal research. As vital parameters are currently only assessed in sedated animals, the next step should be the integration of these modalities in home-cage monitoring.
Collapse
Affiliation(s)
- Carina Barbosa Pereira
- RWTH Aachen University, Faculty of Medicine, Department of Anesthesiology, Aachen, Germany
| | - Janosch Kunczik
- RWTH Aachen University, Faculty of Medicine, Department of Anesthesiology, Aachen, Germany
| | - André Bleich
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Christine Haeger
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Fabian Kiessling
- RWTH Aachen University, Faculty of Medicine, Institute for Experimental Molecular Imaging, Aachen, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - René Tolba
- RWTH Aachen University, Faculty of Medicine, Laboratory Animal Science, Aachen, Germany
| | - Ute Lindauer
- RWTH Aachen University, Faculty of Medicine, Department of Neurosurgery, Aachen, Germany
| | - Stefan Treue
- University of Goettingen, Faculty for Biology and Psychology, Goettingen, Germany
- Leibniz ScienceCampus Primate Cognition, Goettingen, Germany
- German Primate Center—Leibniz Institute for Primate Research, Cognitive Neuroscience Laboratory, Goettingen, Germany
| | - Michael Czaplik
- RWTH Aachen University, Faculty of Medicine, Department of Anesthesiology, Aachen, Germany
| |
Collapse
|
24
|
Kallmyer NE, Shin HJ, Brem EA, Israelsen WJ, Reuel NF. Nesting box imager: Contact-free, real-time measurement of activity, surface body temperature, and respiratory rate applied to hibernating mouse models. PLoS Biol 2019; 17:e3000406. [PMID: 31339883 PMCID: PMC6682158 DOI: 10.1371/journal.pbio.3000406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/05/2019] [Indexed: 01/21/2023] Open
Abstract
Noncontact methods to measure animal activity and physiology are necessary to monitor undisturbed states such as hibernation. Although some noncontact measurement systems are commercially available, they are often incompatible with realistic habitats, which feature freely moving animals in small, cluttered environments. A growing market of single-board computers, microcontrollers, and inexpensive sensors has made it possible to assemble bespoke integrated sensor systems at significantly lower price points. Herein, we describe a custom-built nesting box imager (NBI) that uses a single-board computer (Raspberry Pi) with a passive infrared (IR) motion sensor, silicon charge-coupled device (CCD), and IR camera CCD to monitor the activity, surface body temperature, and respiratory rate of the meadow jumping mouse during hibernation cycles. The data are logged up to 12 samples per minute and postprocessed using custom Matlab scripts. The entire unit can be built at a price point below US$400, which will be drastically reduced as IR (thermal) arrays are integrated into more consumer electronics and become less expensive.
Collapse
Affiliation(s)
| | - Han Jong Shin
- Iowa State University, Ames, Iowa, United States of America
| | - Ethan A. Brem
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - William J. Israelsen
- University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nigel F. Reuel
- Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
25
|
Jorquera-Chavez M, Fuentes S, Dunshea FR, Jongman EC, Warner RD. Computer vision and remote sensing to assess physiological responses of cattle to pre-slaughter stress, and its impact on beef quality: A review. Meat Sci 2019; 156:11-22. [PMID: 31121361 DOI: 10.1016/j.meatsci.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/04/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Pre-slaughter stress is well-known to affect meat quality of beef carcasses and methods have been developed to assess this stress. However, development of more practical and less invasive methods are required in order to assess the response of cattle to pre-slaughter stressors, which will potentially also assist with the prediction of beef quality. This review outlines the importance of pre-slaughter stress as well as existing and emerging technologies for quantification of the pre-slaughter stress. The review includes; i) indicators of meat quality and how they are affected by pre-slaughter stress in cattle, ii) contact techniques that have been commonly used to measure stress indicators in animals, iii) remotely sensed imagery techniques recently used as non-invasive methods to monitor physiological and behavioural parameters and iv) potential implementation of remotely sensed imagery data to perform contactless assessment of physiological measurements, which could be related to the pre-slaughter stress, as well as to the indicators of beef quality. Relevance to industry, conclusions and recommendations for research are included.
Collapse
Affiliation(s)
- Maria Jorquera-Chavez
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sigfredo Fuentes
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ellen C Jongman
- Animal Welfare Science Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|