1
|
Biswas D, Heo J, Sang P, Dey P, Han K, Ko JH, Won SM, Son D, Suh M, Kim HS, Ok JG, Park HJ, Baac HW. Micro-ultrasonic Assessment of Early Stage Clot Formation and Whole Blood Coagulation Using an All-Optical Ultrasound Transducer and Adaptive Signal Processing Algorithm. ACS Sens 2022; 7:2940-2950. [PMID: 36107765 DOI: 10.1021/acssensors.2c00875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Abnormal formation of solid thrombus inside a blood vessel can cause thrombotic morbidity and mortality. This necessitates early stage diagnosis, which requires quantitative assessment with a small volume, for effective therapy with low risk to unwanted development of various diseases. We propose a micro-ultrasonic diagnosis using an all-optical ultrasound-based spectral sensing (AOUSS) technique for sensitive and quantitative characterization of early stage and whole blood coagulation. The AOUSS technique detects and analyzes minute viscoelastic variations of blood at a micro-ultrasonic spot (<100 μm) defined by laser-generated focused ultrasound (LGFU). This utilizes (1) a uniquely designed optical transducer configuration for frequency-spectral matching and wideband operation (6 dB widths: 7-32 MHz and d.c. ∼ 46 MHz, respectively) and (2) an empirical mode decomposition (EMD)-based signal process particularly adapted to nonstationary LGFU signals backscattered from the spot. An EMD-derived spectral analysis enables one to assess viscoelastic variations during the initiation of fibrin formation, which occurs at a very early stage of blood coagulation (1 min) with high sensitivity (frequency transition per storage modulus increment = 8.81 MHz/MPa). Our results exhibit strong agreement with those obtained by conventional rheometry (Pearson's R > 0.95), which are also confirmed by optical microscopy. The micro-ultrasonic and high-sensitivity detection of AOUSS poses a potential clinical significance, serving as a screening modality to diagnose early stage clot formation (e.g., as an indicator for hypercoagulation of blood) and stages of blood-to-clot transition to check a potential risk for development into thrombotic diseases.
Collapse
Affiliation(s)
- Deblina Biswas
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.,School of Bioengineering and Food Technology, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Jeongmin Heo
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pilgyu Sang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Prasanta Dey
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kayoung Han
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong Hwan Ko
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Department of Biomedical Engineering, Department of Intelligent Precision Healthcare Convergence (IPHC), Biomedical Institute of Convergence (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jong G Ok
- Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Yugay V, Mekhtiyev A, Madi P, Neshina Y, Alkina A, Gazizov F, Afanaseva O, Ilyashenko S. Fiber-Optic System for Monitoring Pressure Changes on Mine Support Elements. SENSORS (BASEL, SWITZERLAND) 2022; 22:1735. [PMID: 35270881 PMCID: PMC8914675 DOI: 10.3390/s22051735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The paper presents the developed fiber-optic sensors for monitoring pressure measurement on the elements of mine supports. The sudden destruction of the support leads to the collapse of the mine workings and poses a serious threat to the life and safety of underground workers. A fiber-optic system for monitoring changes in pressures on the elements of mine supports will increase the share of mining automation and reduce the share of manual labor, as well as eliminate measurement errors associated with the human factor. Systematic monitoring of the state of the working elements of the support will allow timely tracking of their deformations caused by an increase in rock pressure on them. Implementation of the system at mining enterprises will expand the use of digital technologies in mining. Timely warning of a mine collapse threat will significantly increase the level of safe mining operations, as well as reduce the cost of supporting mine workings, since elimination of the consequences of destruction is associated with significant material costs. This work presents a developed laboratory testbench that simulates a mine working and elements of an arch support on which are installed the fiber-optic sensors connected to an automated measuring system. The developed hardware and software complex provides the processing of a light spot falling on the surface of a television matrix that is installed at the exit from the optical fiber. The results of visual processing are converted into numerical values, which are used to make a decision about the state of the considered object. In addition to automatic monitoring of the structural integrity condition of the considered object, the system is equipped with a function of a visual display for monitoring results, which makes it possible to track sharp fluctuations and bursts of pressure parameters, based on which the prediction of pre-emergency and emergency situations is performed.
Collapse
Affiliation(s)
- Vyacheslav Yugay
- Faculty of Power Engineering, Automation and Telecommunications, Karaganda Technical University, Karaganda 100027, Kazakhstan; (V.Y.); (P.M.); (Y.N.); (A.A.)
| | - Ali Mekhtiyev
- Energy Department, S. Seifullin Kazakh Agro Technical University, Nur-Sultan 010011, Kazakhstan
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Perizat Madi
- Faculty of Power Engineering, Automation and Telecommunications, Karaganda Technical University, Karaganda 100027, Kazakhstan; (V.Y.); (P.M.); (Y.N.); (A.A.)
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Yelena Neshina
- Faculty of Power Engineering, Automation and Telecommunications, Karaganda Technical University, Karaganda 100027, Kazakhstan; (V.Y.); (P.M.); (Y.N.); (A.A.)
| | - Aliya Alkina
- Faculty of Power Engineering, Automation and Telecommunications, Karaganda Technical University, Karaganda 100027, Kazakhstan; (V.Y.); (P.M.); (Y.N.); (A.A.)
| | - Farit Gazizov
- Department of Economics and Organization of Production, Kazan State Power Engineering University, 420066 Kazan, Russia;
| | - Olga Afanaseva
- Institute of Energy, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Svetlana Ilyashenko
- Basic Department of Trade Policy, Russian University of Economics, 115093 Moscow, Russia;
| |
Collapse
|