1
|
Gudigar A, Kadri NA, Raghavendra U, Samanth J, Maithri M, Inamdar MA, Prabhu MA, Hegde A, Salvi M, Yeong CH, Barua PD, Molinari F, Acharya UR. Automatic identification of hypertension and assessment of its secondary effects using artificial intelligence: A systematic review (2013-2023). Comput Biol Med 2024; 172:108207. [PMID: 38489986 DOI: 10.1016/j.compbiomed.2024.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/17/2024]
Abstract
Artificial Intelligence (AI) techniques are increasingly used in computer-aided diagnostic tools in medicine. These techniques can also help to identify Hypertension (HTN) in its early stage, as it is a global health issue. Automated HTN detection uses socio-demographic, clinical data, and physiological signals. Additionally, signs of secondary HTN can also be identified using various imaging modalities. This systematic review examines related work on automated HTN detection. We identify datasets, techniques, and classifiers used to develop AI models from clinical data, physiological signals, and fused data (a combination of both). Image-based models for assessing secondary HTN are also reviewed. The majority of the studies have primarily utilized single-modality approaches, such as biological signals (e.g., electrocardiography, photoplethysmography), and medical imaging (e.g., magnetic resonance angiography, ultrasound). Surprisingly, only a small portion of the studies (22 out of 122) utilized a multi-modal fusion approach combining data from different sources. Even fewer investigated integrating clinical data, physiological signals, and medical imaging to understand the intricate relationships between these factors. Future research directions are discussed that could build better healthcare systems for early HTN detection through more integrated modeling of multi-modal data sources.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India.
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, 576104, India
| | - M Maithri
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mahesh Anil Inamdar
- Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Mukund A Prabhu
- Department of Cardiology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ajay Hegde
- Manipal Hospitals, Bengaluru, Karnataka, 560102, India
| | - Massimo Salvi
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnicodi Torino, Turin, Italy
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 47500, Subang Jaya, Malaysia
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW, 2010, Australia; School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD, 4350, Australia; Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Filippo Molinari
- Biolab, PolitoBIOMedLab, Department of Electronics and Telecommunications, Politecnicodi Torino, Turin, Italy
| | - U Rajendra Acharya
- School of Mathematics, Physics, and Computing, University of Southern Queensland, Springfield, QLD, 4300, Australia; Centre for Health Research, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
2
|
Katzis K, Berbakov L, Gardašević G, Šveljo O. Breaking Barriers in Emerging Biomedical Applications. ENTROPY (BASEL, SWITZERLAND) 2022; 24:226. [PMID: 35205520 PMCID: PMC8871046 DOI: 10.3390/e24020226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022]
Abstract
The recent global COVID-19 pandemic has revealed that the current healthcare system in modern society can hardly cope with the increased number of patients. Part of the load can be alleviated by incorporating smart healthcare infrastructure in the current system to enable patient's remote monitoring and personalized treatment. Technological advances in communications and sensing devices have enabled the development of new, portable, and more power-efficient biomedical sensors, as well as innovative healthcare applications. Nevertheless, such applications require reliable, resilient, and secure networks. This paper aims to identify the communication requirements for mass deployment of such smart healthcare sensors by providing the overview of underlying Internet of Things (IoT) technologies. Moreover, it highlights the importance of information theory in understanding the limits and barriers in this emerging field. With this motivation, the paper indicates how data compression and entropy used in security algorithms may pave the way towards mass deployment of such IoT healthcare devices. Future medical practices and paradigms are also discussed.
Collapse
Affiliation(s)
- Konstantinos Katzis
- Department of Computer Science and Engineering, European University Cyprus, Nicosia 2404, Cyprus;
| | - Lazar Berbakov
- Institute Mihajlo Pupin, University of Belgrade, 11060 Belgrade, Serbia
| | - Gordana Gardašević
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Olivera Šveljo
- Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia;
| |
Collapse
|
3
|
MINDS: Mobile Agent Itinerary Planning Using Named Data Networking in Wireless Sensor Networks. JOURNAL OF SENSOR AND ACTUATOR NETWORKS 2021. [DOI: 10.3390/jsan10020028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mobile agents have the potential to offer benefits, as they are able to either independently or cooperatively move throughout networks and collect/aggregate sensory data samples. They are programmed to autonomously move and visit sensory data stations through optimal paths, which are established according to the application requirements. However, mobile agent routing protocols still suffer heavy computation/communication overheads, lack of route planning accuracy and long-delay mobile agent migrations. For this, mobile agent route planning protocols aim to find the best-fitted paths for completing missions (e.g., data collection) with minimised delay, maximised performance and minimised transmitted traffic. This article proposes a mobile agent route planning protocol for sensory data collection called MINDS. The key goal of this MINDS is to reduce network traffic, maximise data robustness and minimise delay at the same time. This protocol utilises the Hamming distance technique to partition a sensor network into a number of data-centric clusters. In turn, a named data networking approach is used to form the cluster-heads as a data-centric, tree-based communication infrastructure. The mobile agents utilise a modified version of the Depth-First Search algorithm to move through the tree infrastructure according to a hop-count-aware fashion. As the simulation results show, MINDS reduces path length, reduces network traffic and increases data robustness as compared with two conventional benchmarks (ZMA and TBID) in dense and large wireless sensor networks.
Collapse
|
4
|
Gardašević G, Katzis K, Bajić D, Berbakov L. Emerging Wireless Sensor Networks and Internet of Things Technologies-Foundations of Smart Healthcare. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3619. [PMID: 32605071 PMCID: PMC7374296 DOI: 10.3390/s20133619] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/16/2022]
Abstract
Future smart healthcare systems - often referred to as Internet of Medical Things (IoMT) - will combine a plethora of wireless devices and applications that use wireless communication technologies to enable the exchange of healthcare data. Smart healthcare requires sufficient bandwidth, reliable and secure communication links, energy-efficient operations, and Quality of Service (QoS) support. The integration of Internet of Things (IoT) solutions into healthcare systems can significantly increase intelligence, flexibility, and interoperability. This work provides an extensive survey on emerging IoT communication standards and technologies suitable for smart healthcare applications. A particular emphasis has been given to low-power wireless technologies as a key enabler for energy-efficient IoT-based healthcare systems. Major challenges in privacy and security are also discussed. A particular attention is devoted to crowdsourcing/crowdsensing, envisaged as tools for the rapid collection of massive quantities of medical data. Finally, open research challenges and future perspectives of IoMT are presented.
Collapse
Affiliation(s)
- Gordana Gardašević
- Faculty of Electrical Engineering, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina;
| | - Konstantinos Katzis
- Department of Computer Science and Engineering, European University Cyprus, 2404 Nicosia, Cyprus;
| | - Dragana Bajić
- Faculty of Technical Science, University of Novi Sad, 21000 Novi Sad, Serbia;
| | - Lazar Berbakov
- Institute Mihajlo Pupin, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
da Silva VJ, da Silva Souza V, Guimarães da Cruz R, Mesquita Vidal Martinez de Lucena J, Jazdi N, Ferreira de Lucena Junior V. Commercial Devices-Based System Designed to Improve the Treatment Adherence of Hypertensive Patients. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4539. [PMID: 31635394 PMCID: PMC6832274 DOI: 10.3390/s19204539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/09/2019] [Accepted: 10/16/2019] [Indexed: 01/05/2023]
Abstract
This paper presents an intelligent system designed to increase the treatment adherence of hypertensive patients. The architecture was developed to allow communication among patients, physicians, and families to determine each patient's rate assertion of medication intake time and their self-monitoring of blood pressure. Concerning the medication schedule, the system is designed to follow a predefined prescription, adapting itself to undesired events, such as mistakenly taking medication or forgetting to take medication on time. When covering the blood pressure measurement, it incorporates best medical practices, registering the actual values in recommended frequency and form, trying to avoid the known "white-coat effect." We assume that taking medicine precisely and measuring blood pressure correctly may lead to good adherence to the treatment. The system uses commercial consumer electronic devices and can be replicated in any home equipped with a standard personal computer and Internet access. The resulting architecture has four layers. The first is responsible for adding electronic devices that typically exist in today's homes to the system. The second is a preprocessing layer that filters the data generated from the patient's behavior. The third is a reasoning layer that decides how to act based on the patient's activities observed. Finally, the fourth layer creates messages that should drive the reactions of all involved actors. The reasoning layer takes into consideration the patient's schedule and medication-taking activity data and uses implicit algorithms based on the J48, RepTree, and RandomTree decision tree models to infer the adherence. The algorithms were first adjusted using one academic machine learning and data mining tool. The system communicates with users through smartphones (anytime and anywhere) and smart TVs (in the patient's home) by using the 3G/4G and WiFi infrastructure. It interacts automatically through social networks with doctors and relatives when changes or mistakes in medication intake and blood pressure mean values are detected. By associating the blood pressure data with the history of medication intake, our system can indicate the treatment adherence and help patients to achieve better treatment results. Comparisons with similar research were made, highlighting our findings.
Collapse
Affiliation(s)
| | | | | | | | - Nasser Jazdi
- Institute of Industrial Automation and Software Systems, The University of Stuttgart, 70174 Stuttgart, Germany.
| | - Vicente Ferreira de Lucena Junior
- Federal University of Amazonas, UFAM-PPGI, Manaus-Amazonas 69067-005, Brazil.
- Federal University of Amazonas, UFAM-PPGEE, Manaus-Amazonas 69067-005, Brazil.
- Prof. Nilmar Lins Pimenta Building, Sector North of UFAM's Main Campus, Technology College, Federal University of Amazonas, UFAM-CETELI, Manaus-Amazonas CEP 69077-00, Brazil.
| |
Collapse
|