1
|
Ghosh R, Bentil SA, Juárez JJ. Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol-Phytagel Blends. Polymers (Basel) 2024; 16:2875. [PMID: 39458703 PMCID: PMC11510749 DOI: 10.3390/polym16202875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (w/w) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample's nature during an analysis-whether it is ergodic or not-is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G') and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis.
Collapse
Affiliation(s)
- Richa Ghosh
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Sarah A. Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jaime J. Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
2
|
Lin YM, Shi JY, Yang GG. Endoplasmic reticulum targeted fluorescent probe for real-time monitoring the viscosity changes induced by calcium homeostasis disruption. Talanta 2024; 275:126173. [PMID: 38692051 DOI: 10.1016/j.talanta.2024.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024]
Abstract
The endoplasmic reticulum (ER) acts as the major storage site for calcium ions, which are messenger ions for intracellular signaling. Disruption of calcium ion homeostasis can significantly affect the viscosity, polarity and pH of the ER. However, it is still unclear the relationship between the viscosity changes in ER and the imbalance of calcium ion homeostasis. Herein, we developed a novel fluorescent probe, named TPA, for monitoring viscosity changes that specifically targets the endoplasmic reticulum rather than mitochondria or lysosomes. TPA probe displayed good stability, as well as high responsiveness and selectivity to viscosity. The fluorescence intensity of TPA was significantly enhanced with the increased concentration or incubation time of the stimulating agents(i.e., tunicamycin), showing high responsiveness to the viscosity changes in ER. Furthermore, the TPA probe successfully demonstrated that an increase in intracellular calcium ion concentration leads to an increase in ER viscosity, whereas a decrease in calcium ion concentration leads to a decrease viscosity in ER. Both in vitro and in vivo experiments demonstrated that TPA probe successfully detected the viscosity changes in ER, especially the effects of calcium ion homeostasis disruption on ER. Overall, the TPA probe represents an efficient method for studying the relationship between calcium ion homeostasis and ER viscosity.
Collapse
Affiliation(s)
- Ya Meng Lin
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Jia Yi Shi
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
| | - Gang-Gang Yang
- Biochemical Engineering Research Center, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China; School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China.
| |
Collapse
|
3
|
Development of a Self-Viscosity and Temperature-Compensated Technique for Highly Stable and Highly Sensitive Bead-Based Diffusometry. BIOSENSORS 2022; 12:bios12060362. [PMID: 35735510 PMCID: PMC9221091 DOI: 10.3390/bios12060362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
Abstract
Brownian motion, which is a natural phenomenon, has attracted numerous researchers and received extensive studies over the past decades. The effort contributes to the discovery of optical diffusometry, which is commonly used for micro/nano particle sizing. However, the analysis uncertainty caused by the coupling relationship among particle diameter, temperature, and fluid viscosity usually poses a barrier to precise measurement. Preventing random background noise becomes the key to achieving a high level of accuracy in diffusometry detection. Recently, Janus particles have become known as an ideal tool for resolving the rotational Brownian motion. Followed by our previous study, the rotational Brownian motion and the translational Brownian motion can be separately measured using the Janus particles. Accordingly, a simple self-viscosity and temperature-compensated technique based on the delicate removal of temperature and fluid viscosity variations through particle tracking was first proposed in this study. Consequently, the translational Brownian motion was expressed in terms of particle trajectory, whereas the rotational Brownian motion was expressed in terms of the blinking signal from the Janus particles. The algorithm was verified simulatively and experimentally in temperature (10 °C to 40 °C) and viscosity-controlled (1 mPa·s to 5 mPa·s) fields. In an evaluation of biosensing for a target protein, IFN-γ, the limit of detection of the proposed self-compensated diffusometry reached 0.45 pg/mL, whereas its uncertainties of viscosity and temperature were 96 and 15-fold lower than the pure the rotational Brownian motion counterpart, respectively. The results indicated the low-uncertainty and high-accuracy biosensing capability resulting from the self-viscosity and temperature-compensated technique. This research will provide a potential alternative to future similar bead-based immunosensing, which requires ultra-high stability and sensitivity.
Collapse
|
4
|
Wei X, Zhu Y, Yu X, Cai L, Ruan N, Wu L, Jia N, James TD, Huang C. Endoplasmic Reticulum Targeting Green Fluorescent Protein Chromophore-based Probe for the Detection of Viscosity. Chem Commun (Camb) 2022; 58:10727-10730. [DOI: 10.1039/d2cc00118g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The occurrence of endoplasmic reticulum (ER) stress is the main cause of a variety of biological process that are closely related with numerous diseases. The homeostasis of the ER microenvironment...
Collapse
|
5
|
Das D, Chen WL, Chuang HS. Rapid and Sensitive Pathogen Detection by DNA Amplification Using Janus Particle-Enabled Rotational Diffusometry. Anal Chem 2021; 93:13945-13951. [PMID: 34618421 DOI: 10.1021/acs.analchem.1c03209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid and sensitive detection of infectious bacteria is in all-time high demand to prevent the further spread of the infection and allow early medical intervention. In this study, we use rotational diffusometry (RD), a natural phenomenon characterized by Janus particles, to detect pathogens like Escherichia coli by performing amplification of specific genes. This biosensing method is used to measure the change in viscosity of the fluid in the presence and absence of DNA in the solution by capturing images of modified microbeads at 10 Hz by a CCD camera followed by cross-correlation algorithm analysis. Using rotational diffusometry, we have achieved E. coli detection with 50 pg/μL DNA with a measurement time of 30 s and a sample volume of 2 μL. This sensitivity was achieved with 30 thermal cycles for three different amplicons, viz., 84, 147, and 246 bp. Meanwhile, in the case of 10 and 20 thermal cycles, the detection sensitivity was achieved with 0.1 and 1 ng/μL DNA concentrations for a 246 bp amplicon. Compared with conventional PCR, this technique appears to improve the detection time, thereby reaching a turnaround time of less than 60 min. Other studies showed a successful identification of DNA amplification up to 10 thermal cycles with different sizes of amplicons. The effect of DNA concentration, amplicon size, and the number of thermal cycles on the detection of E. coli was examined in detail and represented in the form of three maps. These maps show the clear difference and the advantages of RD method in comparison with conventional PCR. This unconventional and rapid biosensing method can be used further for downstream application of nucleic acid amplification-based pathogen detection and early disease control.
Collapse
Affiliation(s)
- Dhrubajyoti Das
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Wei-Long Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
6
|
Developing Rapid Antimicrobial Susceptibility Testing for Motile/Non-Motile Bacteria Treated with Antibiotics Covering Five Bactericidal Mechanisms on the Basis of Bead-Based Optical Diffusometry. BIOSENSORS-BASEL 2020; 10:bios10110181. [PMID: 33228090 PMCID: PMC7699397 DOI: 10.3390/bios10110181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
Rapid antimicrobial susceptibility testing (AST) is an effective measure in the treatment of infections and the prevention of bacterial drug resistance. However, diverse antibiotic types and bacterial characteristics have formed complicated barriers to rapid diagnosis. To counteract these limitations, we investigated the interactions between antibiotic-treated bacteria and functionalized microbeads in optical diffusometry. The conjugation with bacteria increased the effective microbead complex size, thereby resulting in a temporal diffusivity change. The yielded data were sorted and analyzed to delineate a pattern for the prediction of antimicrobial susceptibility. The outcome showed that a completed rapid AST based on the trend of microbead diffusivity could provide results within 3 h (2 h measurement + 1 h computation). In this research, we studied four bacterial strains, including Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Staphylococcus aureus, and six antibiotics. Despite the different inhibitory effects caused by various antibiotics, similar trends in diffusivity alteration for all susceptible and resistant cases in the last 40 min of the 2-h measurement period were deduced. In addition, the AST results obtained using optical diffusometry showed good agreement with those acquired from the commercial instrument and conventional culture methods. Finally, we conducted a single-blinded clinical test, and the sensitivity, specificity, and accuracy of the system reached 92.9%, 91.4%, and 91.8%, respectively. Overall, the developed optical diffusometry showcased rapid AST with a small sample volume (20 μL) and low initial bacterial count (105 CFU/mL). This technique provided a promising way to achieve early therapy against microbial diseases in the future.
Collapse
|
7
|
Chen WL, Chuang HS. Trace Biomolecule Detection with Functionalized Janus Particles by Rotational Diffusion. Anal Chem 2020; 92:12996-13003. [PMID: 32933244 DOI: 10.1021/acs.analchem.0c01733] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cytokines are small proteins secreted by cells in innate and adaptive immune systems. Abnormal cytokine secretion is often regarded as an early cue of dysregulation of homeostasis due to diseases or infections. Early detection allows early medical intervention. In this study, a natural phenomenon called rotational Brownian motion was characterized by Janus particles and its potential use in detection of trace biomolecules explored. Through the functionalization of the Janus particles with an antibody, the target cytokine, that is, tumor necrosis factor-α, was measured in terms of rotational diffusion. Rotational diffusion is highly sensitive to the particle volume change according to the Stokes-Einstein-Debye relation and can be quantified by blinking signal. Accordingly, 1 μm half-gold and half-fluorescent microbeads were conjugated with 200 nm nanobeads through sandwiched immunocomplexes. The light source, lead time for stabilization, and purification were investigated for optimization. Particle images can be captured with green light at 5 Hz within 300 s. Under such conditions, the functionalized Janus particles eventually achieved a limit of detection of 1 pg/mL. The rotational diffusometry realized by Janus particles was power-free and feasible for ultrasensitive detection, such as early disease detection.
Collapse
Affiliation(s)
- Wei-Long Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan.,Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
8
|
Bao Y, Zhang Y, Ma J. Reactive amphiphilic hollow SiO 2 Janus nanoparticles for durable superhydrophobic coating. NANOSCALE 2020; 12:16443-16450. [PMID: 32490864 DOI: 10.1039/d0nr02571b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Durable superhydrophobic coating is attractive due to its long-term superhydrophobicity, anti-fouling and self-cleaning properties. However, the fabrication of durable superhydrophobic coatings on a fragile surface, including leather and paper, is still a challenge due to its bad resistance to harsh environments such as high temperature, high pressure and strong acid or strong base. Herein, we developed a universal way to fabricate long-lasting superhydrophobic coating on leather via amphiphilic Janus particles, which have one of the semispheres functionalized with hydrophobic 1-dodecanethiol and the other semisphere functionalized with hydrophilic β-mercaptoethylamine. Polyurethane with isocyanate end groups was sprayed on the leather surface as an intermediate layer to strongly link Janus particles with leather via cross-linking. Moreover, amphiphilic Janus particles were fabricated from hollow SiO2 particles via a thiol-ene click reaction due to its low density. The superhydrophobic coating on leather possessed a high water contact angle of 162.2°. Furthermore, it still retained excellent hydrophobicity with a water contact angle of 154° after 140 cycles of abrasion using sandpaper. This study not only provides a novel method for the fabrication of amphiphilic hollow SiO2 Janus nanoparticles, but also resolves the difficulties in constructing long-lived superhydrophobic coatings on fragile surfaces by existing methods. Meanwhile, the present study also suggests a potential way to translocate functional Janus microcapsules, which may give some significant suggestions on the future nanoparticle design for drug delivery and energy storage.
Collapse
Affiliation(s)
- Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China.
| | | | | |
Collapse
|
9
|
Abstract
Botulinum is a deadly bacterial toxin that causes neuroparalytic disease. However, appropriate tools to detect trace toxic proteins are scarce. This study presents a bead-based diffusometric technique for the rapid, simple, and quantitative detection of biological toxins. Functionalized particles called nano-immunosensors were fabricated by forming sandwiched immunocomplexes comprising Au nanoparticles (AuNPs), toxic proteins, and antibodies on fluorescent probe particles. Particle diffusivity tended to decline with increasing concentration of the target proteins. Calibration curves of purified botulinum toxins (0.01-500 ng/mL) were obtained from whole milk and bovine serum, and results suggested that measurement was independent of the background matrix. The activity of botulinum toxin was evaluated by coating synaptosomal-associated protein 25 (SNAP-25) on fluorescent probe particles. AuNP-conjugated antibodies attached to the probe particles when SNAP-25 proteins were cleaved by active botulinum. Thus, toxicity could be detected from slight changes in diffusivity. A short measurement time of 2 min and a limit of detection of 10 pg/mL were achieved. The nano-immunosensors demonstrated rapid biosensing capability and met the demands of onsite screening for food safety, medical instrument hygiene, and cosmetic surgery products.
Collapse
|