1
|
Assunção AS, Vidal M, Martins MJ, Girão AV, Loyez M, Caucheteur C, Mesquita-Bastos J, Costa FM, Pereira SO, Leitão C. Detection of NT-proBNP Using Optical Fiber Back-Reflection Plasmonic Biosensors. BIOSENSORS 2024; 14:173. [PMID: 38667166 PMCID: PMC11048293 DOI: 10.3390/bios14040173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024]
Abstract
Heart failure (HF) is a clinical entity included in cardiovascular diseases affecting millions of people worldwide, being a leading cause of hospitalization of older adults, and therefore imposing a substantial economic burden on healthcare systems. HF is characterized by dyspnea, fatigue, and edema associated with elevated blood levels of natriuretic peptides, such as N Terminal pro-B-type Natriuretic Peptide (NT-proBNP), for which there is a high demand for point of care testing (POCT) devices. Optical fiber (OF) biosensors offer a promising solution, capable of real-time detection, quantification, and monitoring of NT-proBNP concentrations in serum, saliva, or urine. In this study, immunosensors based on plasmonic uncladded OF tips were developed using OF with different core diameters (200 and 600 µm). The tips were characterized to bulk refractive index (RI), anddetection tests were conducted with NT-proBNP concentrations varying from 0.01 to 100 ng/mL. The 200 µm sensors showed an average total variation of 3.6 ± 2.5 mRIU, an average sensitivity of 50.5 mRIU/ng·mL-1, and a limit of detection (LOD) of 0.15 ng/mL, while the 600 µm sensors had a response of 6.1 ± 4.2 mRIU, a sensitivity of 102.8 mRIU/ng·mL-1, and an LOD of 0.11 ng/mL. Control tests were performed using interferents such as uric acid, glucose, and creatinine. The results show the potential of these sensors for their use in biological fluids.
Collapse
Affiliation(s)
- Ana Sofia Assunção
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Miguel Vidal
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Maria João Martins
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Ana Violeta Girão
- CICECO—Aveiro Institute of Materials, Department of Materials and Ceramics Engineering, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - José Mesquita-Bastos
- Institute of Biomedicine—iBiMED, School of Health Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Florinda M. Costa
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| | - Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (A.S.A.); (M.V.); (M.J.M.); (F.M.C.)
| |
Collapse
|
2
|
Abstract
Optical biosensors are frontrunners for the rapid and real-time detection of analytes, particularly for low concentrations. Among them, whispering gallery mode (WGM) resonators have recently attracted a growing focus due to their robust optomechanical features and high sensitivity, measuring down to single binding events in small volumes. In this review, we provide a broad overview of WGM sensors along with critical advice and additional "tips and tricks" to make them more accessible to both biochemical and optical communities. Their structures, fabrication methods, materials, and surface functionalization chemistries are discussed. We propose this reflection under a pedagogical approach to describe and explain these biochemical sensors with a particular focus on the most recent achievements in the field. In addition to highlighting the advantages of WGM sensors, we also discuss and suggest strategies to overcome their current limitations, leaving room for further development as practical tools in various applications. We aim to provide new insights and combine different knowledge and perspectives to advance the development of the next generation of WGM biosensors. With their unique advantages and compatibility with different sensing modalities, these biosensors have the potential to become major game changers for biomedical and environmental monitoring, among many other relevant target applications.
Collapse
Affiliation(s)
- Médéric Loyez
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Maxwell Adolphson
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Jie Liao
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| | - Lan Yang
- Department of Electrical & Systems Engineering, Washington University, One Brookings Drive Green Hall 2120F, St. Louis, Missouri 63130, United States
| |
Collapse
|
3
|
Szczerska M, Wityk P, Listewnik P. The SARS-CoV-2 specific IgG antibodies biophotonic sensor. JOURNAL OF BIOPHOTONICS 2023; 16:e202200172. [PMID: 36222282 PMCID: PMC9874777 DOI: 10.1002/jbio.202200172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
In this paper, we present the design and the principle of operation of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) specific immunoglobulin G (IgG) biophotonic sensor, which is based on the single-mode telecommunication fiber. We fabricated the sensor head at the face of the single mode fiber-28. Due to the process of bio-functionalization, our sensor has the ability to selectively detect the SARS-CoV-2 specific IgG antibodies. The results of preliminary tests allowed us to correctly determine the presence of antibodies in less than 1 min in 5 μl in a volume sample of concentration of 10 μg/ml, which according to studies, corresponds to the concentration of IgG antibodies in human serum. Additionally, the tested sample can be smaller than 5 μl in volume.
Collapse
Affiliation(s)
- Małgorzata Szczerska
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
| | - Paweł Wityk
- Department of Biopharmaceutics and PharmacodynamicsMedical University of GdańskGdańskPoland
| | - Paulina Listewnik
- Department of Metrology and Optoelectronics, Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
| |
Collapse
|
4
|
Tian Z, Yao Y, Yuan J, Zhang L, Chen NK, Zhang Y, Wang M, Wu Q. Post chemical etching of tapered seven-core fiber sensor for enhanced figure of merit. OPTICS LETTERS 2022; 47:4672-4675. [PMID: 36107060 DOI: 10.1364/ol.469107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
A post chemical etching process to a tapered seven-core fiber (TSCF) is proposed and experimentally demonstrated to effectively adjust the mode profiles of high-order supermodes, aimed to improve the figure of merit (FOM). The experimental results show that the FOM of an etched TSCF is as high as 1431.36 1/RIU, a 7.32-times enhancement compared with that of TSCF without etching, provided the TSCF has the same taper waist diameter of 19.20 µm. The proposed method opens a new, to the best of our knowledge, method for optimizing optical fiber sensor performance.
Collapse
|
5
|
Fasseaux H, Loyez M, Chah K, Caucheteur C. Phase interrogation of plasmonic tilted fiber Bragg grating biosensors through the Jones formalism. OPTICS EXPRESS 2022; 30:34287-34296. [PMID: 36242444 DOI: 10.1364/oe.463140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Gold-coated tilted fiber Bragg gratings (TFBG) are refined plasmonic biosensors, highly sensitive to surrounding refractive index (RI) changes. Their interrogation usually relies on insertion loss measurements for single input polarized light, limiting the set of exploitable features. To overcome this limitation, we trigger the Jones formalism to retrieve the polarization enabling optimized plasmonic excitation for both phase and amplitude measurements. We present an experimental phase shift with a sensitivity as high as 45835°/RIU and further assess this approach to HER2 proteins sensing at 1µg/ml. We compare this angular modality with the one relying on the insertion loss using a quality factor that takes the shift as well as the dispersion into account. This strengthens its relevance in terms of precision for ultra-small RI variations.
Collapse
|
6
|
Leitão C, Pereira SO, Marques C, Cennamo N, Zeni L, Shaimerdenova M, Ayupova T, Tosi D. Cost-Effective Fiber Optic Solutions for Biosensing. BIOSENSORS 2022; 12:575. [PMID: 36004971 PMCID: PMC9405647 DOI: 10.3390/bios12080575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 05/13/2023]
Abstract
In the last years, optical fiber sensors have proven to be a reliable and versatile biosensing tool. Optical fiber biosensors (OFBs) are analytical devices that use optical fibers as transducers, with the advantages of being easily coated and biofunctionalized, allowing the monitorization of all functionalization and detection in real-time, as well as being small in size and geometrically flexible, thus allowing device miniaturization and portability for point-of-care (POC) testing. Knowing the potential of such biosensing tools, this paper reviews the reported OFBs which are, at the moment, the most cost-effective. Different fiber configurations are highlighted, namely, end-face reflected, unclad, D- and U-shaped, tips, ball resonators, tapered, light-diffusing, and specialty fibers. Packaging techniques to enhance OFBs' application in the medical field, namely for implementing in subcutaneous, percutaneous, and endoscopic operations as well as in wearable structures, are presented and discussed. Interrogation approaches of OFBs using smartphones' hardware are a great way to obtain cost-effective sensing approaches. In this review paper, different architectures of such interrogation methods and their respective applications are presented. Finally, the application of OFBs in monitoring three crucial fields of human life and wellbeing are reported: detection of cancer biomarkers, detection of cardiovascular biomarkers, and environmental monitoring.
Collapse
Affiliation(s)
- Cátia Leitão
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Sónia O. Pereira
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Carlos Marques
- i3N, Department of Physics, University of Aveiro, 3810-193 Aveiro, Portugal; (S.O.P.); (C.M.)
| | - Nunzio Cennamo
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Luigi Zeni
- Department of Engineering, University of Campania Luigi Vanvitelli, Via Roma 29, 81031 Aversa, Italy; (N.C.); (L.Z.)
| | - Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.S.); (T.A.)
- Laboratory of Biosensors and Bioinstruments, National Laboratory Astana, Nur-Sultan 010000, Kazakhstan
| |
Collapse
|
7
|
Mendes JP, Coelho LCC, Jorge PAS, Pereira CM. Differential Refractometric Biosensor for Reliable Human IgG Detection: Proof of Concept. BIOSENSORS 2022; 12:515. [PMID: 35884318 PMCID: PMC9312733 DOI: 10.3390/bios12070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
A new sensing platform based on long-period fiber gratings (LPFGs) for direct, fast, and selective detection of human immunoglobulin G (IgG; Mw = 150 KDa) was developed and characterized. The transducer's high selectivity is based on the specific interaction of a molecularly imprinted polymer (MIPs) design for IgG detection. The sensing scheme is based on differential refractometric measurements, including a correction system based on a non-imprinted polymer (NIP)-coated LPFG, allowing reliable and more sensitive measurements, improving the rejection of false positives in around 30%. The molecular imprinted binding sites were performed on the surface of a LPFG with a sensitivity of about 130 nm/RIU and a FOM of 16 RIU-1. The low-cost and easy to build device was tested in a working range from 1 to 100 nmol/L, revealing a limit of detection (LOD) and a sensitivity of 0.25 nmol/L (0.037 µg/mL) and 0.057 nm.L/nmol, respectively. The sensor also successfully differentiates the target analyte from the other abundant elements that are present in the human blood plasma.
Collapse
Affiliation(s)
- João P. Mendes
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Luís C. C. Coelho
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Pedro A. S. Jorge
- INESC TEC—Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal;
- Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Carlos M. Pereira
- Centro de Investigação em Química UP (CIQUP)—Instituto de Ciências Moleculares (IMS), Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal; (J.P.M.); (C.M.P.)
- Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Vidal M, Soares MS, Loyez M, Costa FM, Caucheteur C, Marques C, Pereira SO, Leitão C. Relevance of the Spectral Analysis Method of Tilted Fiber Bragg Grating-Based Biosensors: A Case-Study for Heart Failure Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:2141. [PMID: 35336312 PMCID: PMC8954114 DOI: 10.3390/s22062141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/23/2022] [Accepted: 03/08/2022] [Indexed: 01/16/2023]
Abstract
Optical fiber technology has rapidly progressed over the years, providing valuable benefits for biosensing purposes such as sensor miniaturization and the possibility for remote and real-time monitoring. In particular, tilted fiber Bragg gratings (TFBGs) are extremely sensitive to refractive index variations taking place on their surface. The present work comprises a case-study on the impact of different methods of analysis applied to decode spectral variations of bare and plasmonic TFBGs during the detection of N-terminal B-type natriuretic peptide (NT-proBNP), a heart failure biomarker, namely by following the most sensitive mode, peaks of the spectral envelopes, and the envelopes' crossing point and area. Tracking the lower envelope resulted in the lowest limits of detection (LOD) for bare and plasmonic TFBGs, namely, 0.75 ng/mL and 0.19 ng/mL, respectively. This work demonstrates the importance of the analysis method on the outcome results, which is crucial to attain the most reliable and sensitive method with lower LOD sensors. Furthermore, it makes the scientific community aware to take careful attention when comparing the performance of different biosensors in which different analysis methods were used.
Collapse
Affiliation(s)
- Miguel Vidal
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Maria Simone Soares
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Médéric Loyez
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Florinda M. Costa
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium; (M.L.); (C.C.)
| | - Carlos Marques
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Sónia O. Pereira
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| | - Cátia Leitão
- Physics Department & I3N, University of Aveiro, 3810-193 Aveiro, Portugal; (M.V.); (M.S.S.); (F.M.C.); (C.M.); (S.O.P.)
| |
Collapse
|
9
|
Biosensors as diagnostic tools in clinical applications. Biochim Biophys Acta Rev Cancer 2022; 1877:188726. [DOI: 10.1016/j.bbcan.2022.188726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
10
|
Loyez M, DeRosa MC, Caucheteur C, Wattiez R. Overview and emerging trends in optical fiber aptasensing. Biosens Bioelectron 2022; 196:113694. [PMID: 34637994 DOI: 10.1016/j.bios.2021.113694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Optical fiber biosensors have attracted growing interest over the last decade and quickly became a key enabling technology, especially for the detection of biomarkers at extremely low concentrations and in small volumes. Among the many and recent fiber-optic sensing amenities, aptamers-based sensors have shown unequalled performances in terms of ease of production, specificity, and sensitivity. The immobilization of small and highly stable bioreceptors such as DNA has bolstered their use for the most varied applications e.g., medical diagnosis, food safety and environmental monitoring. This review highlights the recent advances in aptamer-based optical fiber biosensors. An in-depth analysis of the literature summarizes different fiber-optic structures and biochemical strategies for molecular detection and immobilization of receptors over diverse surfaces. In this review, we analyze the features offered by those sensors and discuss about the next challenges to be addressed. This overview investigates both biochemical and optical parameters, drawing the guiding lines for forthcoming innovations and prospects in this ever-growing field of research.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium; Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium.
| | - Maria C DeRosa
- Department of Chemistry, 203 Steacie Building, Carleton University, 1125, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Avenue du Champ de Mars 6, 7000, Mons, Belgium
| |
Collapse
|
11
|
Lobry M, Loyez M, Chah K, Hassan EM, Goormaghtigh E, DeRosa MC, Wattiez R, Caucheteur C. HER2 biosensing through SPR-envelope tracking in plasmonic optical fiber gratings. BIOMEDICAL OPTICS EXPRESS 2020; 11:4862-4871. [PMID: 33014586 PMCID: PMC7510885 DOI: 10.1364/boe.401200] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 05/22/2023]
Abstract
In the biomedical detection context, plasmonic tilted fiber Bragg gratings (TFBGs) have been demonstrated to be a very accurate and sensitive sensing tool, especially well-adapted for biochemical detection. In this work, we have developed an aptasensor following a triple strategy to improve the overall sensing performances and robustness. Single polarization fiber (SPF) is used as biosensor substrate while the demodulation is based on tracking a peculiar feature of the lower envelope of the cladding mode resonances spectrum. This method is highly sensitive and yields wavelength shifts several tens of times higher than the ones reported so far based on the tracking of individual modes of the spectrum. An amplification of the response is further performed through a sandwich assay by the use of specific antibodies. These improvements have been achieved on a biosensor developed for the detection of the HER2 (Human Epidermal Growth Factor Receptor-2) protein, a relevant breast cancer biomarker. These advanced developments can be very interesting for point-of-care biomedical measurements in a convenient practical way.
Collapse
Affiliation(s)
- Maxime Lobry
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Bld du Triomphe 2,1050 Brussels, Belgium
| | - Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, 6 Av. du Champ de Mars, 7000 Mons, Belgium
| | - Karima Chah
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A0R6, Canada
| | - Erik Goormaghtigh
- Laboratory for the Structure and Function of Biological Membranes, Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles, Bld du Triomphe 2,1050 Brussels, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, 6 Av. du Champ de Mars, 7000 Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, 31 Bld Dolez, 7000 Mons, Belgium
| |
Collapse
|
12
|
Loyez M, Lobry M, Hassan EM, DeRosa MC, Caucheteur C, Wattiez R. HER2 breast cancer biomarker detection using a sandwich optical fiber assay. Talanta 2020; 221:121452. [PMID: 33076075 DOI: 10.1016/j.talanta.2020.121452] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/17/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
Abstract
Optical fiber-based surface plasmon resonance (OF-SPR) sensors have demonstrated high versatility and performances over the last years, which propelled the technique to the heart of numerous and original biosensing concepts. In this work, we contribute to this effort and present our recent findings about the detection of breast cancer HER2 biomarkers through OF-SPR optrodes. 1 cm-long sections of 400 μm core-diameter optical fibers were covered with a sputtered gold film, yielding enhanced sensitivity to surface refractive index changes. Studying the impacts of the gold film thickness on the plasmonic spectral response, we improved the quality and reproducibility of the sensors. These achievements were correlated in two ways, using both the central wavelengths of the plasmon resonance and its influence on the bulk refractive index sensitivity. Our dataset was fed by additional biosensing experiments with a direct and indirect approach, relying on aptamers and antibodies specifically implemented in a sandwich layout. HER2 biomarkers were specifically detected at 0.6 μg/mL (5.16 nM) in label-free while the amplification with HER2-antibodies provided a nearly hundredfold signal magnification, reaching 9.3 ng/mL (77.4 pM). We believe that these results harbinger the way for their further use in biomedical samples.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Place Du Parc 20, 7000, Mons, Belgium.
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Eman M Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada; Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Maria C DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Bld. Dolez 31, 7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Place Du Parc 20, 7000, Mons, Belgium
| |
Collapse
|
13
|
Xiao P, Sun Z, Huang Y, Lin W, Ge Y, Xiao R, Li K, Li Z, Lu H, Yang M, Liang L, Sun LP, Ran Y, Li J, Guan BO. Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating. OPTICS EXPRESS 2020; 28:15783-15793. [PMID: 32549415 DOI: 10.1364/oe.391889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Fiber-optic biosensors are of great interest to many bio/chemical sensing applications. In this study, we demonstrate a high-order-diffraction long period grating (HOD-LPG) for the detection of prostate specific antigen (PSA). A HOD-LPG with a period number of less than ten and an elongated grating pitch could realize a temperature-insensitive and bending-independent biosensor. The bio-functionalized HOD-LPG was capable of detecting PSA in phosphate buffered saline with concentrations ranging from 5 to 500 ng/ml and exhibited excellent specificity. A limit of detection of 9.9 ng/ml was achieved, which is promising for analysis of the prostate specific antigen.
Collapse
|
14
|
Lobry M, Loyez M, Hassan EM, Chah K, DeRosa MC, Goormaghtigh E, Wattiez R, Caucheteur C. Multimodal plasmonic optical fiber grating aptasensor. OPTICS EXPRESS 2020; 28:7539-7551. [PMID: 32225979 DOI: 10.1364/oe.385747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/16/2020] [Indexed: 05/22/2023]
Abstract
Tilted fiber Bragg gratings (TFBGs) are now a well-established technology in the scientific literature, bringing numerous advantages, especially for biodetection. Significant sensitivity improvements are achieved by exciting plasmon waves on their metal-coated surface. Nowadays, a large part of advances in this topic relies on new strategies aimed at providing sensitivity enhancements. In this work, TFBGs are produced in both single-mode and multimode telecommunication-grade optical fibers, and their relative performances are evaluated for refractometry and biosensing purposes. TFBGs are biofunctionalized with aptamers oriented against HER2 (Human Epidermal Growth Factor Receptor-2), a relevant protein biomarker for breast cancer diagnosis. In vitro assays confirm that the sensing performances of TFBGs in multimode fiber are higher or identical to those of their counterparts in single-mode fiber, respectively, when bulk refractometry or surface biosensing is considered. These observations are confirmed by numerical simulations. TFBGs in multimode fiber bring valuable practical assets, featuring a reduced spectral bandwidth for improved multiplexing possibilities enabling the detection of several biomarkers.
Collapse
|
15
|
Loyez M, Hassan EM, Lobry M, Liu F, Caucheteur C, Wattiez R, DeRosa MC, Willmore WG, Albert J. Rapid Detection of Circulating Breast Cancer Cells Using a Multiresonant Optical Fiber Aptasensor with Plasmonic Amplification. ACS Sens 2020; 5:454-463. [PMID: 31967461 DOI: 10.1021/acssensors.9b02155] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The detection of circulating tumor cells (CTCs), which are responsible for metastasis in several forms of cancer, represents an important goal in oncological diagnosis and treatment. These cells remain extremely challenging to detect, despite numerous previous studies, due to their low concentration (1-10 cells/mL of blood). In this work, an all-fiber plasmonic aptasensor featuring multiple narrowband resonances in the near-infrared wavelength range was developed to detect metastatic breast cancer cells. To this aim, specific aptamers against mammaglobin-A were selected and immobilized as receptors on the sensor surface. In vitro assays confirm that the label-free and real-time detection of cancer cells [limit of detection (LOD) of 49 cells/mL] occurs within 5 min, while the additional use of functionalized gold nanoparticles allows a 2-fold amplification of the biosensor response. Differential measurements on selected optical resonances were used to process the sensor response, and results were confirmed by microscopy. The detection of only 10 cancer cells/mL was achieved with relevant specificity against control cells and with quick response time.
Collapse
Affiliation(s)
- Médéric Loyez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Eman M. Hassan
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Maxime Lobry
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Fu Liu
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Christophe Caucheteur
- Electromagnetism and Telecommunications Department, University of Mons, Boulevard Dolez 31, 7000 Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Department, University of Mons, Champ de Mars 6, 7000 Mons, Belgium
| | - Maria C. DeRosa
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - William G. Willmore
- Institute of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Jacques Albert
- Department of Electronics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
16
|
Sypabekova M, Korganbayev S, González-Vila Á, Caucheteur C, Shaimerdenova M, Ayupova T, Bekmurzayeva A, Vangelista L, Tosi D. Functionalized etched tilted fiber Bragg grating aptasensor for label-free protein detection. Biosens Bioelectron 2019; 146:111765. [PMID: 31606689 DOI: 10.1016/j.bios.2019.111765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
An aptasensor based on etched tilted fiber Bragg grating (eTFBG) is developed on a single-mode optical fiber targeting biomolecule detection. TFBGs were chemically etched using hydrofluoric acid (HF) to partially remove the fiber cladding. The sensor response was coarsely interrogated, resulting on a sensitivity increase from 1.25 nm/RIU (refractive index unit) at the beginning of the process, up to 23.38 nm/RIU at the end of the etching, for a RI range from 1.3418 to 1.4419 RIU. The proposed aptasensor showed improved RI sensitivity as compared to the unetched TFBG, without requiring metal depositions on the fiber surface or polarization control during the measurements. The proposed sensor was tested for the detection of thrombin-aptamer interactions based on silane-coupling surface chemistry, with thrombin concentrations ranging from 2.5 to 40 nM. Functionalized eTFBGs provided a competitive platform for biochemical interaction measurements, showing sensitivity values ranging from 2.3 to 3.3 p.m./nM for the particular case of thrombin detection.
Collapse
Affiliation(s)
- Marzhan Sypabekova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan.
| | - Sanzhar Korganbayev
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Álvaro González-Vila
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Christophe Caucheteur
- Electromagnetism and Telecommunication Department, University of Mons, Boulevard Dolez 31, 7000, Mons, Belgium
| | - Madina Shaimerdenova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Takhmina Ayupova
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Aliya Bekmurzayeva
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Luca Vangelista
- School of Medicine, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| | - Daniele Tosi
- PI National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan; School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, 010000, Nur-Sultan, Kazakhstan
| |
Collapse
|