1
|
Colli Alfaro JG, Trejos AL. Design and Fabrication of Embroidered Textile Strain Sensors: An Alternative to Stitch-Based Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:1503. [PMID: 36772542 PMCID: PMC9920134 DOI: 10.3390/s23031503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Smart textile sensors have been gaining popularity as alternative methods for the continuous monitoring of human motion. Multiple methods of fabrication for these textile sensors have been proposed, but the simpler ones include stitching or embroidering the conductive thread onto an elastic fabric to create a strain sensor. Although multiple studies have demonstrated the efficacy of textile sensors using the stitching technique, there is almost little to no information regarding the fabrication of textile strain sensors using the embroidery method. In this paper, a design guide for the fabrication of an embroidered resistive textile strain sensor is presented. All of the required design steps are explained, as well as the different embroidery design parameters and their optimal values. Finally, three embroidered textile strain sensors were created using these design steps. These sensors are based on the principle of superposition and were fabricated using a stainless-steel conductive thread embroidered onto a polyester-rubber elastic knit structure. The three sensors demonstrated an average gauge factor of 1.88±0.51 over a 26% working range, low hysteresis (8.54±2.66%), and good repeatability after being pre-stretched over a certain number of stretching cycles.
Collapse
Affiliation(s)
| | - Ana Luisa Trejos
- School of Biomedical Engineering, Western University, London, ON N6A 5B9, Canada
- Department of Electrical and Computer Engineering, Western University, London, ON N6A 5B9, Canada
| |
Collapse
|
2
|
Lu J, Zhang L, Xing C, Jia G, Lu Z, Tian Q, Zhang S, Lv J. Polypyrrole and cotton fabric‐based flexible micro‐supercapacitors. J Appl Polym Sci 2022. [DOI: 10.1002/app.52801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiawei Lu
- College of Textiles and Clothing Yancheng Institute of Technology Yancheng P. R. China
| | - Linsheng Zhang
- College of Textiles and Clothing Yancheng Institute of Technology Yancheng P. R. China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen P. R. China
| | - Gaopeng Jia
- College of Textiles and Clothing Yancheng Institute of Technology Yancheng P. R. China
| | - Zhenqian Lu
- College of Textiles and Clothing Yancheng Institute of Technology Yancheng P. R. China
| | - Qiang Tian
- Zibo Dayang Flame Retardant Products. LTD Zibo P. R. China
| | - Shaohui Zhang
- Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronic Engineering, College of Mechatronics and Control Engineering Shenzhen University Shenzhen P. R. China
| | - Jingchun Lv
- College of Textiles and Clothing Yancheng Institute of Technology Yancheng P. R. China
| |
Collapse
|
3
|
The Idea of RFIDtex Transponders Utilization in Household Appliances on the Example of a Washing Machine Demonstrator. ENERGIES 2022. [DOI: 10.3390/en15072639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modern textronic RFID transponders offer a lot of new possibilities for household appliances designers. Possibility to implement new functions is most evident in clothes washing and ironing techniques, where the information stored in the memory of the RFID transponder sewn into the textiles can be used to choose the most appropriate ironing program for a given type of fabric or to select the best washing program for different clothes placed in a drum of washing machine. The purpose of the work was to propose, design, and develop a laboratory stand to demonstrate usage of RFIDtex transponders in a washing machine. The developed device enabled simulation of the presence of textiles equipped with RFIDtex transponders in a washing machine drum. A set of measurements of the constructed device readout efficiency of textronic transponders placed in the drum was also performed. The device firmware, which manages multiple data readings from tags inside the drum for the performed by integrated RWD (read/write device), was also prepared and implemented. This allowed the efficiency of the identification of textiles equipped with RFIDtex transponders to be increased. RFIDtex transponders can also be used in the future to provide precise information about textiles to the washing machine. Based on this information, device will be able to reduce power consumption.
Collapse
|
4
|
Zhou Z, Chen N, Zhong H, Zhang W, Zhang Y, Yin X, He B. Textile-Based Mechanical Sensors: A Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6073. [PMID: 34683661 PMCID: PMC8538676 DOI: 10.3390/ma14206073] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022]
Abstract
Innovations related to textiles-based sensors have drawn great interest due to their outstanding merits of flexibility, comfort, low cost, and wearability. Textile-based sensors are often tied to certain parts of the human body to collect mechanical, physical, and chemical stimuli to identify and record human health and exercise. Until now, much research and review work has been carried out to summarize and promote the development of textile-based sensors. As a feature, we focus on textile-based mechanical sensors (TMSs), especially on their advantages and the way they achieve performance optimizations in this review. We first adopt a novel approach to introduce different kinds of TMSs by combining sensing mechanisms, textile structure, and novel fabricating strategies for implementing TMSs and focusing on critical performance criteria such as sensitivity, response range, response time, and stability. Next, we summarize their great advantages over other flexible sensors, and their potential applications in health monitoring, motion recognition, and human-machine interaction. Finally, we present the challenges and prospects to provide meaningful guidelines and directions for future research. The TMSs play an important role in promoting the development of the emerging Internet of Things, which can make health monitoring and everyday objects connect more smartly, conveniently, and comfortably efficiently in a wearable way in the coming years.
Collapse
Affiliation(s)
- Zaiwei Zhou
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Nuo Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Hongchuan Zhong
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Wanli Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
| | - Yue Zhang
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| | - Xiangyu Yin
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Bingwei He
- College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.Z.); (H.Z.); (W.Z.)
- Fujian Engineering Research Center of Joint Intelligent Medical Engineering, Fuzhou 350108, China
| |
Collapse
|
5
|
Ipekci HH, Gozutok Z, Celik N, Serdar Onses M, Uzunoglu A. Ink-jet printing of particle-free silver inks on fabrics with a superhydrophobic protection layer for fabrication of robust electrochemical sensors. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Seeling P, Reisslein M, Fitzek FHP. Real-Time Compression for Tactile Internet Data Streams. SENSORS (BASEL, SWITZERLAND) 2021; 21:1924. [PMID: 33803484 PMCID: PMC7967243 DOI: 10.3390/s21051924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022]
Abstract
The Tactile Internet will require ultra-low latencies for combining machines and humans in systems where humans are in the control loop. Real-time and perceptual coding in these systems commonly require content-specific approaches. We present a generic approach based on deliberately reduced number accuracy and evaluate the trade-off between savings achieved and errors introduced with real-world data for kinesthetic movement and tele-surgery. Our combination of bitplane-level accuracy adaptability with perceptual threshold-based limits allows for great flexibility in broad application scenarios. Combining the attainable savings with the relatively small introduced errors enables the optimal selection of a working point for the method in actual implementations.
Collapse
Affiliation(s)
- Patrick Seeling
- Department of Computer Science, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Martin Reisslein
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706, USA;
| | - Frank H. P. Fitzek
- Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, 01062 Dresden, Germany;
| |
Collapse
|
7
|
Ali AE, Jeoti V, Stojanović GM. Fabric based printed-distributed battery for wearable e-textiles: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:772-793. [PMID: 34552390 PMCID: PMC8451651 DOI: 10.1080/14686996.2021.1962203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 05/22/2023]
Abstract
Wearable power supply devices and systems are important necessities for the emerging textile electronic applications. Current energy supply devices usually need more space than the device they power, and are often based on rigid and bulky materials, making them difficult to wear. Fabric-based batteries without any rigid electrical components are therefore ideal candidates to solve the problem of powering these devices. Printing technologies have greater potential in manufacturing lightweight and low-cost batteries with high areal capacity and generating high voltages which are crucial for electronic textile (e-textile) applications. In this review, we present various printing techniques, and battery chemistries applied for smart fabrics, and give a comparison between them in terms of their potential to power the next generation of electronic textiles. Series combinations of many of these printed and distributed battery cells, using electrically conducting threads, have demonstrated their ability to power different electronic devices with a specific voltage and current requirements. Therefore, the present review summarizes the chemistries and material components of several flexible and textile-based batteries, and provides an outlook for the future development of fabric-based printed batteries for wearable and electronic textile applications with enhanced level of DC voltage and current for long periods of time.
Collapse
Affiliation(s)
- Adnan E. Ali
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
- CONTACT Adnan E. Ali Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, Novi Sad21000, Serbia
| | - Varun Jeoti
- Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
| | | |
Collapse
|
8
|
Jansen KMB. Performance Evaluation of Knitted and Stitched Textile Strain Sensors. SENSORS 2020; 20:s20247236. [PMID: 33348785 PMCID: PMC7767045 DOI: 10.3390/s20247236] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 01/13/2023]
Abstract
By embedding conductive yarns in, or onto, knitted textile fabrics, simple but robust stretch sensor garments can be manufactured. In that way resistance based sensors can be fully integrated in textiles without compromising wearing comfort, stretchiness, washability, and ease of use in daily life. The many studies on such textile strain sensors that have been published in recent years show that these sensors work in principle, but closer inspection reveals that many of them still have severe practical limitations like a too narrow working range, lack of sensitivity, and undesired time-dependent and hysteresis effects. For those that intend to use this technology it is difficult to determine which manufacturing parameters, shape, stitch type, and materials to apply to realize a functional sensor for a given application. This paper therefore aims to serve as a guideline for the fashion designers, electronic engineers, textile researchers, movement scientists, and human–computer interaction specialists planning to create stretch sensor garments. The paper is limited to textile based sensors that can be constructed using commercially available conductive yarns and existing knitting and embroidery equipment. Within this subtopic, relevant literature is discussed, and a detailed quantitative comparison is provided focusing on sensor characteristics like the gauge factor, working range, and hysteresis.
Collapse
Affiliation(s)
- Kaspar M B Jansen
- Emerging Materials Group, Department Industrial Design Engineering, Delft University of Technology, 2628 DE Delft, The Netherlands
| |
Collapse
|
9
|
Encapsulation of Electrically Conductive Apparel Fabrics: Effects on Performance. SENSORS 2020; 20:s20154243. [PMID: 32751479 PMCID: PMC7436089 DOI: 10.3390/s20154243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/26/2020] [Accepted: 07/28/2020] [Indexed: 01/05/2023]
Abstract
Electrically conductive fabrics are achieved by functionalizing with treatments such as graphene; however, these change conventional fabric properties and the treatments are typically not durable. Encapsulation may provide a solution for this, and the present work aims to address these challenges. Next-to-skin wool and cotton knit fabrics functionalized using graphene ink were encapsulated with three poly(dimethylsiloxane)-based products. Properties known to be critical in a next-to-skin application were investigated (fabric structure, moisture transfer, electrical conductivity, exposure to transient ambient conditions, wash, abrasion, and storage). Wool and cotton fabrics performed similarly. Electrical conductivity was conferred with the graphene treatment but decreased with encapsulation. Wetting and high humidity/low temperature resulted in an increase in electrical conductivity, while decreases in electrical conductivity were evident with wash, abrasion, and storage. Each encapsulant mitigated effects of exposures but these effects differed slightly. Moisture transfer changed with graphene and encapsulants. As key performance properties of the wool and cotton fabrics following treatment with graphene and an encapsulant differed from their initial state, use as a patch integrated as part of an upper body apparel item would be acceptable.
Collapse
|
10
|
Ma C, Yuan Q, Du H, Ma MG, Si C, Wan P. Multiresponsive MXene (Ti 3C 2T x)-Decorated Textiles for Wearable Thermal Management and Human Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34226-34234. [PMID: 32673490 DOI: 10.1021/acsami.0c10750] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Over the past few years, wearable electronics and smart textiles have seen tremendous growth in both academia and industries. However, it is still a challenge to prepare robust, flexible, wearable, and multiresponsive textile electronics. A newly blooming two-dimensional (2D) transition-metal carbide/nitride (MXene) is regarded as an ideal active material to build multifunctional electronics due to its intriguing properties. Herein, a hydrophobic and multifunctional textile composite (Si-MAP) was prepared by decoration of conductive MXene nanosheets onto air-laid paper, followed by wrapping with poly(dimethylsiloxane) (PDMS). These obtained smart textiles exhibited excellent electronic/photonic/mechanical triresponsive properties: Si-MAPs could reach high equilibrium temperatures (104.9 and 118.7 °C) under quite low power illumination (1.25 W cm-2) and working voltage (4 V). The Si-MAP pressure sensor exhibited high sensitivity and rapid response time (30-40 ms), which can capture a wide range of human movements. Moreover, the thin PDMS layer not only rendered the textile composites hydrophobic but also improved the stability and adaptation for daily use. Remarkably, the hydrophobic Si-MAPs have maintained the advantages of breathability and washability, which make them suitable for wearing. Thus, this smart Si-MAP textile provides a reference for the study of the next generation of light, portable, and wearable textile-based electronic devices.
Collapse
Affiliation(s)
- Chang Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Qi Yuan
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Haishun Du
- Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - Ming-Guo Ma
- Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Pengbo Wan
- Center of Advanced Elastomer Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
11
|
Abstract
Stretchable conductive fabric (SCF) is a durable nontoxic textile material coated or blended with conductive metals. Unlike solid metal, SCF effectively conducts electricity with low resistance and maintains conductance when stretched. Thus, we hypothesized that SCF electrodes are more suitable for cardiac electrophysiology applications in beating hearts than traditional solid metal electrodes. Accordingly, we developed a straightforward protocol for fabricating customized SCF electrodes and then assessed their ability to electrically stimulate and record electrical signals from beating hearts. Compared to flexible copper electrodes, SCF electrodes had similar electrical resistance (112.50 ± 25.81 vs 157.85 ± 17.06 Ω, p = 0.09), activated cardiac tissue with lower stimulus strength (27.25 ± 3.52 vs 15.35 ± 2.15 mA, p = 0.0001), recorded stable electrograms with a higher signal-to-noise ratio (20.54 ± 1.09 vs 13.35 ± 1.46 dB, p = 0.04), and were noncorrosive and harmless to cardiac tissue or vasculature. These results support the use of SCF over metal electrodes for a wide range of cardiac electrophysiology applications in the beating heart.
Collapse
|
12
|
Maghimaa M, Alharbi SA. Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 204:111806. [PMID: 32044619 DOI: 10.1016/j.jphotobiol.2020.111806] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/25/2022]
Abstract
The cotton fabrics are a cosmopolitan in usage due to their extraordinary features. The clothes are a very good medium for the growth of pathogenic microorganisms. The nanoparticles have diverse benefits in the biomedical field like drug carrier and as antimicrobials. The current investigation was aimed to synthesize the metallic silver nanoparticles (AgNPs) from the aqueous extract of Curcuma longa leaf and evaluating their antimicrobial and wound healing potential of AgNPs coated cotton fabric. The synthesized AgNPs were characterized by HR-TEM and FT-IR examinations. The formulated AgNPs were coated with cotton fabrics to test their efficiency against the pathogenic microorganisms. The existence of AgNPs in the cotton fabrics was confirmed via the SEM along with EDX analysis. The antimicrobial potential of fabricated AgNPs and its coated cotton fabrics was inspected against the human pathogenic strains. The wound healing efficacy was examined in the L929 cells. The HR-TEM analysis proved the existence of spherical shaped AgNPs. In the antimicrobial activity, the CL-AgNPs loaded cotton fabric was exhibited an appreciable decrease in the growth of pathogenic microorganisms. The crude extract, as well as formulated AgNPs, also exhibited the noticeable antimicrobial potency against the S.aureus, P.aeruginosa, S.pyogenes, and C.albicans. The AgNPs loaded cotton fabrics was displayed the potent wound healing activity in the fibroblast (L929) cells. Consequently, it was concluded that the formulated AgNPs from C.longa coated cotton fabrics may be utilized for the variety of applications in hospital patients and even medical workers to prevent the microbial infection.
Collapse
Affiliation(s)
- M Maghimaa
- Department of Microbiology, Muthayammal College of Arts &Science, Rasipuram, Tamilnadu, India.
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|