1
|
Li T, Ma W, Zheng Y, Fan X, Yang G, Wang L, Li Z. A survey on gait recognition against occlusion: taxonomy, dataset and methodology. PeerJ Comput Sci 2024; 10:e2602. [PMID: 39896378 PMCID: PMC11784899 DOI: 10.7717/peerj-cs.2602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 11/20/2024] [Indexed: 02/04/2025]
Abstract
Traditional biometric techniques often require direct subject participation, limiting application in various situations. In contrast, gait recognition allows for human identification via computer analysis of walking patterns without subject cooperation. However, occlusion remains a key challenge limiting real-world application. Recent surveys have evaluated advances in gait recognition, but only few have focused specifically on addressing occlusion conditions. In this article, we introduces a taxonomy that systematically classifies real-world occlusion, datasets, and methodologies in the field of occluded gait recognition. By employing this proposed taxonomy as a guide, we conducted an extensive survey encompassing datasets featuring occlusion and explored various methods employed to conquer challenges in occluded gait recognition. Additionally, we provide a list of future research directions, which can serve as a stepping stone for researchers dedicated to advancing the application of gait recognition in real-world scenarios.
Collapse
Affiliation(s)
- Tianhao Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
- Department of Medical Physics, Duke University, Durham, North Carolina, United States
| | - Weizhi Ma
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Yujia Zheng
- School of Information Science and Technology, North China University of Technology, Beijing, China
- State Key Laboratory of Intelligent Game, Institute of Software Chinese Academy of Sciences, Beijing, China
| | - Xinchao Fan
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Guangcan Yang
- School of Information Science and Technology, North China University of Technology, Beijing, China
| | - Lijun Wang
- Advance Vision Institute, Hangzhou Institute of Technology, Xidian University, Hangzhou, China
| | - Zhengping Li
- School of Information Science and Technology, North China University of Technology, Beijing, China
| |
Collapse
|
2
|
Parashar A, Parashar A, Shabaz M, Gupta D, Sahu AK, Khan MA. Advancements in artificial intelligence for biometrics: A deep dive into model-based gait recognition techniques. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024; 130:107712. [DOI: 10.1016/j.engappai.2023.107712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
3
|
Argones Rúa E, Van hamme T, Preuveneers D, Joosen W. Discriminative training of spiking neural networks organised in columns for stream‐based biometric authentication. IET BIOMETRICS 2022. [DOI: 10.1049/bme2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Tim Van hamme
- Department of Computer Science imec—DistriNet KU Leuven Heverlee Belgium
| | - Davy Preuveneers
- Department of Computer Science imec—DistriNet KU Leuven Heverlee Belgium
| | - Wouter Joosen
- Department of Computer Science imec—DistriNet KU Leuven Heverlee Belgium
| |
Collapse
|
4
|
Parashar A, Shekhawat RS, Ding W, Rida I. Intra-class variations with deep learning-based gait analysis: A comprehensive survey of covariates and methods. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
User Authentication by Gait Data from Smartphone Sensors Using Hybrid Deep Learning Network. MATHEMATICS 2022. [DOI: 10.3390/math10132283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
User authentication and verification by gait data based on smartphones’ inertial sensors has gradually attracted increasing attention due to their compact size, portability and affordability. However, the existing approaches often require users to walk on a specific road at a normal walking speed to improve recognition accuracy. In order to recognize gaits under unconstrained conditions on where and how users walk, we proposed a Hybrid Deep Learning Network (HDLN), which combined the advantages of a long short-term memory (LSTM) network and a convolutional neural network (CNN) to reliably extract discriminative features from complex smartphone inertial data. The convergence layer of HDLN was optimized through a spatial pyramid pooling and attention mechanism. The former ensured that the gait features were extracted from more dimensions, and the latter ensured that only important gait information was processed while ignoring unimportant data. Furthermore, we developed an APP that can achieve real-time gait recognition. The experimental results showed that HDLN achieved better performance improvements than CNN, LSTM, DeepConvLSTM and CNN+LSTM by 1.9%, 2.8%, 2.0% and 1.3%, respectively. Furthermore, the experimental results indicated our model’s high scalability and strong suitability in real application scenes.
Collapse
|
6
|
Low WS, Chan CK, Chuah JH, Tee YK, Hum YC, Salim MIM, Lai KW. A Review of Machine Learning Network in Human Motion Biomechanics. JOURNAL OF GRID COMPUTING 2022; 20:4. [DOI: 10.1007/s10723-021-09595-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/28/2021] [Indexed: 07/26/2024]
|
7
|
Kim DY, Lee SH, Jeong GM. Stack LSTM-Based User Identification Using Smart Shoes with Accelerometer Data. SENSORS 2021; 21:s21238129. [PMID: 34884133 PMCID: PMC8662428 DOI: 10.3390/s21238129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022]
Abstract
In this study, we propose a long short-term memory (LSTM)-based user identification method using accelerometer data from smart shoes. In general, for the user identification with human walking data, we require a pre-processing stage in order to divide human walking data into individual steps. Next, user identification can be made with divided step data. In these approaches, when there exist partial data that cannot complete a single step, it is difficult to apply those data to the classification. Considering these facts, in this study, we present a stack LSTM-based user identification method for smart-shoes data. Rather than using a complicated analysis method, we designed an LSTM network for user identification with accelerometer data of smart shoes. In order to learn partial data, the LSTM network was trained using walking data with random sizes and random locations. Then, the identification can be made without any additional analysis such as step division. In the experiments, user walking data with 10 m were used. The experimental results show that the average recognition rate was about 93.41%, 97.19%, and 98.26% by using walking data of 2.6, 3.9, and 5.2 s, respectively. With the experimental results, we show that the proposed method can classify users effectively.
Collapse
|
8
|
Zaroug A, Garofolini A, Lai DTH, Mudie K, Begg R. Prediction of gait trajectories based on the Long Short Term Memory neural networks. PLoS One 2021; 16:e0255597. [PMID: 34351994 PMCID: PMC8341582 DOI: 10.1371/journal.pone.0255597] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/20/2021] [Indexed: 11/19/2022] Open
Abstract
The forecasting of lower limb trajectories can improve the operation of assistive devices and minimise the risk of tripping and balance loss. The aim of this work was to examine four Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirectional and Autoencoders) in predicting the future trajectories of lower limb kinematics, i.e. Angular Velocity (AV) and Linear Acceleration (LA). Kinematics data of foot, shank and thigh (LA and AV) were collected from 13 male and 3 female participants (28 ± 4 years old, 1.72 ± 0.07 m in height, 66 ± 10 kg in mass) who walked for 10 minutes at preferred walking speed (4.34 ± 0.43 km.h-1) and at an imposed speed (5km.h-1, 15.4% ± 7.6% faster) on a 0% gradient treadmill. The sliding window technique was adopted for training and testing the LSTM models with total kinematics time-series data of 10,500 strides. Results based on leave-one-out cross validation, suggested that the LSTM autoencoders is the top predictor of the lower limb kinematics trajectories (i.e. up to 0.1s). The normalised mean squared error was evaluated on trajectory predictions at each time-step and it obtained 2.82-5.31% for the LSTM autoencoders. The ability to predict future lower limb motions may have a wide range of applications including the design and control of bionics allowing improved human-machine interface and mitigating the risk of falls and balance loss.
Collapse
Affiliation(s)
- Abdelrahman Zaroug
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | | | - Daniel T. H. Lai
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- College of Engineering and Science, Victoria University, Melbourne, Victoria, Australia
| | - Kurt Mudie
- Defence Science and Technology Group, Melbourne, Victoria, Australia
| | - Rezaul Begg
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Applications of Recurrent Neural Network for Biometric Authentication & Anomaly Detection. INFORMATION 2021. [DOI: 10.3390/info12070272] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recurrent Neural Networks are powerful machine learning frameworks that allow for data to be saved and referenced in a temporal sequence. This opens many new possibilities in fields such as handwriting analysis and speech recognition. This paper seeks to explore current research being conducted on RNNs in four very important areas, being biometric authentication, expression recognition, anomaly detection, and applications to aircraft. This paper reviews the methodologies, purpose, results, and the benefits and drawbacks of each proposed method below. These various methodologies all focus on how they can leverage distinct RNN architectures such as the popular Long Short-Term Memory (LSTM) RNN or a Deep-Residual RNN. This paper also examines which frameworks work best in certain situations, and the advantages and disadvantages of each proposed model.
Collapse
|
10
|
Peinado-Contreras A, Munoz-Organero M. Gait-Based Identification Using Deep Recurrent Neural Networks and Acceleration Patterns. SENSORS 2020; 20:s20236900. [PMID: 33287142 PMCID: PMC7729817 DOI: 10.3390/s20236900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 11/18/2022]
Abstract
This manuscript presents an approach to the challenge of biometric identification based on the acceleration patterns generated by a user while walking. The proposed approach uses the data captured by a smartphone’s accelerometer and gyroscope sensors while the users perform the gait activity and optimizes the design of a recurrent neural network (RNN) to optimally learn the features that better characterize each individual. The database is composed of 15 users, and the acceleration data provided has a tri-axial format in the X-Y-Z axes. Data are pre-processed to estimate the vertical acceleration (in the direction of the gravity force). A deep recurrent neural network model consisting of LSTM cells divided into several layers and dense output layers is used for user recognition. The precision results obtained by the final architecture are above 97% in most executions. The proposed deep neural network-based architecture is tested in different scenarios to check its efficiency and robustness.
Collapse
Affiliation(s)
| | - Mario Munoz-Organero
- Department of Telematic Engineering and UC3M-BS Institute of Financial Big Data, Universidad Carlos III de Madrid, 28911 Leganés, Madrid, Spain
- Correspondence:
| |
Collapse
|