1
|
Yue K, Zhan L, Wang Z. Unsupervised domain adaptation teacher-student network for retinal vessel segmentation via full-resolution refined model. Sci Rep 2025; 15:2038. [PMID: 39814756 PMCID: PMC11735984 DOI: 10.1038/s41598-024-83018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/10/2024] [Indexed: 01/18/2025] Open
Abstract
Retinal blood vessels are the only blood vessels in the human body that can be observed non-invasively. Changes in vessel morphology are closely associated with hypertension, diabetes, cardiovascular disease and other systemic diseases, and computers can help doctors identify these changes by automatically segmenting blood vessels in fundus images. If we train a highly accurate segmentation model on one dataset (source domain) and apply it to another dataset (target domain) with a different data distribution, the segmentation accuracy will drop sharply, which is called the domain shift problem. This paper proposes a novel unsupervised domain adaptation method to address this problem. It uses a teacher-student framework to generate pseudo labels for the target domain image, and trains the student network with a combination of source domain loss and domain adaptation loss; finally, the weights of the teacher network are updated from the exponential moving average of the student network and used for the target domain segmentation. We reconstructed the encoder and decoder of the network into a full-resolution refined model by computing the training loss at multiple semantic levels and multiple label resolutions. We validated our method on two publicly available datasets DRIVE and STARE. From STARE to DRIVE, the accuracy, sensitivity, and specificity are 0.9633, 0.8616,and 0.9733, respectively. From DRIVE to STARE, the accuracy, sensitivity, and specificity are 0.9687, 0.8470, and 0.9785, respectively. Our method outperforms most state-of-the-art unsupervised methods. Compared with domain adaptation methods, our method also has the best F1 score (0.8053) from STARE to DRIVE and a competitive F1 score (0.8001) from DRIVE to STARE.
Collapse
Affiliation(s)
- Kejuan Yue
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| | - Lixin Zhan
- College of Systems Engineering, National University of Defense Technology, Changsha, 410073, China.
| | - Zheng Wang
- School of Computer Science, Hunan First Normal University, Changsha, 410205, China
| |
Collapse
|
2
|
Patel H, Shah H, Patel G, Patel A. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artif Intell Med 2024; 152:102883. [PMID: 38657439 DOI: 10.1016/j.artmed.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Hematology is the study of diagnosis and treatment options for blood diseases, including cancer. Cancer is considered one of the deadliest diseases across all age categories. Diagnosing such a deadly disease at the initial stage is essential to cure the disease. Hematologists and pathologists rely on microscopic evaluation of blood or bone marrow smear images to diagnose blood-related ailments. The abundance of overlapping cells, cells of varying densities among platelets, non-illumination levels, and the amount of red and white blood cells make it more difficult to diagnose illness using blood cell images. Pathologists are required to put more effort into the traditional, time-consuming system. Nowadays, it becomes possible with machine learning and deep learning techniques, to automate the diagnostic processes, categorize microscopic blood cells, and improve the accuracy of the procedure and its speed as the models developed using these methods may guide an assisting tool. In this article, we have acquired, analyzed, scrutinized, and finally selected around 57 research papers from various machine learning and deep learning methodologies that have been employed in the diagnosis of leukemia and its classification over the past 20 years, which have been published between the years 2003 and 2023 by PubMed, IEEE, Science Direct, Google Scholar and other pertinent sources. Our primary emphasis is on evaluating the advantages and limitations of analogous research endeavors to provide a concise and valuable research directive that can be of significant utility to fellow researchers in the field.
Collapse
Affiliation(s)
- Hema Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India.
| | - Himal Shah
- QURE Haematology Centre, Ahmedabad 380006, Gujarat, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| | - Atul Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
3
|
Khan TM, Naqvi SS, Robles-Kelly A, Razzak I. Retinal vessel segmentation via a Multi-resolution Contextual Network and adversarial learning. Neural Netw 2023; 165:310-320. [PMID: 37327578 DOI: 10.1016/j.neunet.2023.05.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/24/2023] [Accepted: 05/17/2023] [Indexed: 06/18/2023]
Abstract
Timely and affordable computer-aided diagnosis of retinal diseases is pivotal in precluding blindness. Accurate retinal vessel segmentation plays an important role in disease progression and diagnosis of such vision-threatening diseases. To this end, we propose a Multi-resolution Contextual Network (MRC-Net) that addresses these issues by extracting multi-scale features to learn contextual dependencies between semantically different features and using bi-directional recurrent learning to model former-latter and latter-former dependencies. Another key idea is training in adversarial settings for foreground segmentation improvement through optimization of the region-based scores. This novel strategy boosts the performance of the segmentation network in terms of the Dice score (and correspondingly Jaccard index) while keeping the number of trainable parameters comparatively low. We have evaluated our method on three benchmark datasets, including DRIVE, STARE, and CHASE, demonstrating its superior performance as compared with competitive approaches elsewhere in the literature.
Collapse
Affiliation(s)
- Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad, Pakistan
| | - Antonio Robles-Kelly
- School of Information Technology, Faculty of Science Engineering & Built Environment, Deakin University, Locked Bag 20000, Geelong, Australia; Defence Science and Technology Group, 5111, Edinburgh, SA, Australia
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
4
|
Zhang H, Ni W, Luo Y, Feng Y, Song R, Wang X. TUnet-LBF: Retinal fundus image fine segmentation model based on transformer Unet network and LBF. Comput Biol Med 2023; 159:106937. [PMID: 37084640 DOI: 10.1016/j.compbiomed.2023.106937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023]
Abstract
Segmentation of retinal fundus images is a crucial part of medical diagnosis. Automatic extraction of blood vessels in low-quality retinal images remains a challenging problem. In this paper, we propose a novel two-stage model combining Transformer Unet (TUnet) and local binary energy function model (LBF), TUnet-LBF, for coarse to fine segmentation of retinal vessels. In the coarse segmentation stage, the global topological information of blood vessels is obtained by TUnet. The neural network outputs the initial contour and the probability maps, which are input to the fine segmentation stage as the priori information. In the fine segmentation stage, an energy modulated LBF model is proposed to obtain the local detail information of blood vessels. The proposed model reaches accuracy (Acc) of 0.9650, 0.9681 and 0.9708 on the public datasets DRIVE, STARE and CHASE_DB1 respectively. The experimental results demonstrate the effectiveness of each component in the proposed model.
Collapse
Affiliation(s)
- Hanyu Zhang
- School of Geography, Liaoning Normal University, Dalian City, 116029, China; School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China; College of Information Science and Engineering, Northeastern University, Shenyang, 110167, China.
| | - Weihan Ni
- School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China.
| | - Yi Luo
- College of Information Science and Engineering, Northeastern University, Shenyang, 110167, China.
| | - Yining Feng
- School of Geography, Liaoning Normal University, Dalian City, 116029, China.
| | - Ruoxi Song
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xianghai Wang
- School of Geography, Liaoning Normal University, Dalian City, 116029, China; School of Computer and Information Technology, Liaoning Normal University, Dalian City, 116029, China.
| |
Collapse
|
5
|
Islam MT, Khan HA, Naveed K, Nauman A, Gulfam SM, Kim SW. LUVS-Net: A Lightweight U-Net Vessel Segmentor for Retinal Vasculature Detection in Fundus Images. ELECTRONICS 2023; 12:1786. [DOI: 10.3390/electronics12081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This paper presents LUVS-Net, which is a lightweight convolutional network for retinal vessel segmentation in fundus images that is designed for resource-constrained devices that are typically unable to meet the computational requirements of large neural networks. The computational challenges arise due to low-quality retinal images, wide variance in image acquisition conditions and disparities in intensity. Consequently, the training of existing segmentation methods requires a multitude of trainable parameters for the training of networks, resulting in computational complexity. The proposed Lightweight U-Net for Vessel Segmentation Network (LUVS-Net) can achieve high segmentation performance with only a few trainable parameters. This network uses an encoder–decoder framework in which edge data are transposed from the first layers of the encoder to the last layer of the decoder, massively improving the convergence latency. Additionally, LUVS-Net’s design allows for a dual-stream information flow both inside as well as outside of the encoder–decoder pair. The network width is enhanced using group convolutions, which allow the network to learn a larger number of low- and intermediate-level features. Spatial information loss is minimized using skip connections, and class imbalances are mitigated using dice loss for pixel-wise classification. The performance of the proposed network is evaluated on the publicly available retinal blood vessel datasets DRIVE, CHASE_DB1 and STARE. LUVS-Net proves to be quite competitive, outperforming alternative state-of-the-art segmentation methods and achieving comparable accuracy using trainable parameters that are reduced by two to three orders of magnitude compared with those of comparative state-of-the-art methods.
Collapse
Affiliation(s)
- Muhammad Talha Islam
- Department of Computer Science, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Haroon Ahmed Khan
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad 45550, Pakistan
- Department of Electrical and Computer Engineering, Aarhus University, 8000 Aarhus, Denmark
| | - Ali Nauman
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Sardar Muhammad Gulfam
- Department of Electrical and Computer Engineering, Abbottabad Campus, COMSATS University Islamabad (CUI), Abbottabad 22060, Pakistan
| | - Sung Won Kim
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
6
|
Sun K, Chen Y, Chao Y, Geng J, Chen Y. A retinal vessel segmentation method based improved U-Net model. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
7
|
Arsalan M, Khan TM, Naqvi SS, Nawaz M, Razzak I. Prompt Deep Light-Weight Vessel Segmentation Network (PLVS-Net). IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1363-1371. [PMID: 36194721 DOI: 10.1109/tcbb.2022.3211936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Achieving accurate retinal vessel segmentation is critical in the progression and diagnosis of vision-threatening diseases such as diabetic retinopathy and age-related macular degeneration. Existing vessel segmentation methods are based on encoder-decoder architectures, which frequently fail to take into account the retinal vessel structure's context in their analysis. As a result, such methods have difficulty bridging the semantic gap between encoder and decoder characteristics. This paper proposes a Prompt Deep Light-weight Vessel Segmentation Network (PLVS-Net) to address these issues by using prompt blocks. Each prompt block use combination of asymmetric kernel convolutions, depth-wise separable convolutions, and ordinary convolutions to extract useful features. This novel strategy improves the performance of the segmentation network while simultaneously decreasing the number of trainable parameters. Our method outperformed competing approaches in the literature on three benchmark datasets, including DRIVE, STARE, and CHASE.
Collapse
|
8
|
Iqbal S, Khan TM, Naveed K, Naqvi SS, Nawaz SJ. Recent trends and advances in fundus image analysis: A review. Comput Biol Med 2022; 151:106277. [PMID: 36370579 DOI: 10.1016/j.compbiomed.2022.106277] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Automated retinal image analysis holds prime significance in the accurate diagnosis of various critical eye diseases that include diabetic retinopathy (DR), age-related macular degeneration (AMD), atherosclerosis, and glaucoma. Manual diagnosis of retinal diseases by ophthalmologists takes time, effort, and financial resources, and is prone to error, in comparison to computer-aided diagnosis systems. In this context, robust classification and segmentation of retinal images are primary operations that aid clinicians in the early screening of patients to ensure the prevention and/or treatment of these diseases. This paper conducts an extensive review of the state-of-the-art methods for the detection and segmentation of retinal image features. Existing notable techniques for the detection of retinal features are categorized into essential groups and compared in depth. Additionally, a summary of quantifiable performance measures for various important stages of retinal image analysis, such as image acquisition and preprocessing, is provided. Finally, the widely used in the literature datasets for analyzing retinal images are described and their significance is emphasized.
Collapse
Affiliation(s)
- Shahzaib Iqbal
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Tariq M Khan
- School of Computer Science and Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Khuram Naveed
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan; Department of Electrical and Computer Engineering, Aarhus University, Aarhus, Denmark
| | - Syed S Naqvi
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Syed Junaid Nawaz
- Department of Electrical and Computer Engineering, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|
9
|
Multifilters-Based Unsupervised Method for Retinal Blood Vessel Segmentation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Fundus imaging is one of the crucial methods that help ophthalmologists for diagnosing the various eye diseases in modern medicine. An accurate vessel segmentation method can be a convenient tool to foresee and analyze fatal diseases, including hypertension or diabetes, which damage the retinal vessel’s appearance. This work suggests an unsupervised approach for vessels segmentation out of retinal images. The proposed method includes multiple steps. Firstly, from the colored retinal image, green channel is extracted and preprocessed utilizing Contrast Limited Histogram Equalization as well as Fuzzy Histogram Based Equalization for contrast enhancement. To expel geometrical articles (macula, optic disk) and noise, top-hat morphological operations are used. On the resulted enhanced image, matched filter and Gabor wavelet filter are applied, and the outputs from both is added to extract vessels pixels. The resulting image with the now noticeable blood vessel is binarized using human visual system (HVS). A final image of segmented blood vessel is obtained by applying post-processing. The suggested method is assessed on two public datasets (DRIVE and STARE) and showed comparable results with regard to sensitivity, specificity and accuracy. The results we achieved with respect to sensitivity, specificity together with accuracy on DRIVE database are 0.7271, 0.9798 and 0.9573, and on STARE database these are 0.7164, 0.9760, and 0.9560, respectively, in less than 3.17 s on average per image.
Collapse
|
10
|
Guo S. LightEyes: A Lightweight Fundus Segmentation Network for Mobile Edge Computing. SENSORS (BASEL, SWITZERLAND) 2022; 22:3112. [PMID: 35590802 PMCID: PMC9104959 DOI: 10.3390/s22093112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 12/04/2022]
Abstract
Fundus is the only structure that can be observed without trauma to the human body. By analyzing color fundus images, the diagnosis basis for various diseases can be obtained. Recently, fundus image segmentation has witnessed vast progress with the development of deep learning. However, the improvement of segmentation accuracy comes with the complexity of deep models. As a result, these models show low inference speeds and high memory usages when deploying to mobile edges. To promote the deployment of deep fundus segmentation models to mobile devices, we aim to design a lightweight fundus segmentation network. Our observation comes from the fact that high-resolution representations could boost the segmentation of tiny fundus structures, and the classification of small fundus structures depends more on local features. To this end, we propose a lightweight segmentation model called LightEyes. We first design a high-resolution backbone network to learn high-resolution representations, so that the spatial relationship between feature maps can be always retained. Meanwhile, considering high-resolution features means high memory usage; for each layer, we use at most 16 convolutional filters to reduce memory usage and decrease training difficulty. LightEyes has been verified on three kinds of fundus segmentation tasks, including the hard exudate, the microaneurysm, and the vessel, on five publicly available datasets. Experimental results show that LightEyes achieves highly competitive segmentation accuracy and segmentation speed compared with state-of-the-art fundus segmentation models, while running at 1.6 images/s Cambricon-1A speed and 51.3 images/s GPU speed with only 36k parameters.
Collapse
Affiliation(s)
- Song Guo
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
11
|
Xu Y, Fan Y. Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images. Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
|
13
|
DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. PLoS One 2022; 16:e0261698. [PMID: 34972109 PMCID: PMC8719769 DOI: 10.1371/journal.pone.0261698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
In this era, deep learning-based medical image analysis has become a reliable source in assisting medical practitioners for various retinal disease diagnosis like hypertension, diabetic retinopathy (DR), arteriosclerosis glaucoma, and macular edema etc. Among these retinal diseases, DR can lead to vision detachment in diabetic patients which cause swelling of these retinal blood vessels or even can create new vessels. This creation or the new vessels and swelling can be analyzed as biomarker for screening and analysis of DR. Deep learning-based semantic segmentation of these vessels can be an effective tool to detect changes in retinal vasculature for diagnostic purposes. This segmentation task becomes challenging because of the low-quality retinal images with different image acquisition conditions, and intensity variations. Existing retinal blood vessels segmentation methods require a large number of trainable parameters for training of their networks. This paper introduces a novel Dense Aggregation Vessel Segmentation Network (DAVS-Net), which can achieve high segmentation performance with only a few trainable parameters. For faster convergence, this network uses an encoder-decoder framework in which edge information is transferred from the first layers of the encoder to the last layer of the decoder. Performance of the proposed network is evaluated on publicly available retinal blood vessels datasets of DRIVE, CHASE_DB1, and STARE. Proposed method achieved state-of-the-art segmentation accuracy using a few number of trainable parameters.
Collapse
|
14
|
Bai R, Jiang S, Sun H, Yang Y, Li G. Deep Neural Network-Based Semantic Segmentation of Microvascular Decompression Images. SENSORS 2021; 21:s21041167. [PMID: 33562275 PMCID: PMC7915571 DOI: 10.3390/s21041167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022]
Abstract
Image semantic segmentation has been applied more and more widely in the fields of satellite remote sensing, medical treatment, intelligent transportation, and virtual reality. However, in the medical field, the study of cerebral vessel and cranial nerve segmentation based on true-color medical images is in urgent need and has good research and development prospects. We have extended the current state-of-the-art semantic-segmentation network DeepLabv3+ and used it as the basic framework. First, the feature distillation block (FDB) was introduced into the encoder structure to refine the extracted features. In addition, the atrous spatial pyramid pooling (ASPP) module was added to the decoder structure to enhance the retention of feature and boundary information. The proposed model was trained by fine tuning and optimizing the relevant parameters. Experimental results show that the encoder structure has better performance in feature refinement processing, improving target boundary segmentation precision, and retaining more feature information. Our method has a segmentation accuracy of 75.73%, which is 3% better than DeepLabv3+.
Collapse
Affiliation(s)
- Ruifeng Bai
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Jiang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- Correspondence: ; Tel.: +86-187-4401-2663
| | - Haijiang Sun
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
| | - Yifan Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiju Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; (R.B.); (H.S.); (Y.Y.); (G.L.)
| |
Collapse
|
15
|
A Multi-Scale Feature Fusion Method Based on U-Net for Retinal Vessel Segmentation. ENTROPY 2020; 22:e22080811. [PMID: 33286584 PMCID: PMC7517387 DOI: 10.3390/e22080811] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Computer-aided automatic segmentation of retinal blood vessels plays an important role in the diagnosis of diseases such as diabetes, glaucoma, and macular degeneration. In this paper, we propose a multi-scale feature fusion retinal vessel segmentation model based on U-Net, named MSFFU-Net. The model introduces the inception structure into the multi-scale feature extraction encoder part, and the max-pooling index is applied during the upsampling process in the feature fusion decoder of an improved network. The skip layer connection is used to transfer each set of feature maps generated on the encoder path to the corresponding feature maps on the decoder path. Moreover, a cost-sensitive loss function based on the Dice coefficient and cross-entropy is designed. Four transformations-rotating, mirroring, shifting and cropping-are used as data augmentation strategies, and the CLAHE algorithm is applied to image preprocessing. The proposed framework is tested and trained on DRIVE and STARE, and sensitivity (Sen), specificity (Spe), accuracy (Acc), and area under curve (AUC) are adopted as the evaluation metrics. Detailed comparisons with U-Net model, at last, it verifies the effectiveness and robustness of the proposed model. The Sen of 0.7762 and 0.7721, Spe of 0.9835 and 0.9885, Acc of 0.9694 and 0.9537 and AUC value of 0.9790 and 0.9680 were achieved on DRIVE and STARE databases, respectively. Results are also compared to other state-of-the-art methods, demonstrating that the performance of the proposed method is superior to that of other methods and showing its competitive results.
Collapse
|